

SANYO Electric Co., Ltd. Semiconductor Company

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN Telephone: 81-(0)3-3837-6339, 6340, 6342, Facsimile: 81-(0)3-3837-6377

•SANYO Electric Co.,Ltd. Semiconductor Company Homepage URL; http://www.semic.sanyo.co.jp/index_e.htm

R100 Printed on 100% Recycled Paper

This catalog provides information as of June, 2005. Specifications and information herein are subject to change without notice.

Printed in Japan / June 2005 2k PC Plan

Power Supply Devices

'05-6

Power Supply IC

From Analog to Digital **SANYO's multifunction regulator IC series** and TR series support various electronic equipment with advanced functions and high reliability to ensure that customers catch the latest next-generation products. In addition, "New Charge Pump" and "ISB[®]" technologies, based on new technology developed originally by SANYO, realize further miniaturization in product size.

CONTENTS

N	lew Technology		
	1) Charge Pumps	····1 to	14
	2) ISB [®] (Integrated System in Board)	15 to	18
P	roduct Showcase		
	Products by Application	19 to	20
	Product Lineup	-21 to	26
	Switching Regulators	27 to	34
	External Excitation Step-Down Switching Regulator	35 to	36
	Synchronous Rectification Switching Regulator	37 to	40
	Switching Regulator + Linear Regulator (multi-regulator)		·41
	Power IC for Portable CD Players		·42
	Cellular Phone System Power Supplies	,	43
	AC-DC Converter Controllers	44 to	45
	Phase Control Voltage Inverter Control IC		46
	System Regulators	47 to	52
	Three-Terminal Regulators		-53
	Power Supply ICs with Built-in Watchdog Timer Circu	its	·54
	Dual Protection ICs		-55
	Rechargeable Battery Charge Control ICs	56 to	58
	Series Regulators		62
	Discrete Devices	00 10	70
	Package Lineur	03 10	12
	i acraye Lineup	73 to	80

Recently electronic equipment has been subject to various demands. These demands range from stable operation at low input voltages, more compact and highly efficient power systems and low power consumption for products such as cellular phones, to lower power voltages and higher efficiency for the new millennium of digital home appliances, and even low standby power from the viewpoint of energy conservation and advanced technology for compliance with high frequency radiation standards, etc. SANYO strives to swiftly and directly catch these customer needs, and to develop ICs from a system set base perspective with emphasis on the development of a wide range of general-purpose products.

SANYO has developed two major new technologies for specific fields. The first of these is called the New Charge Pump, and the second is called ISB[®]. These module technologies make use of original SANYO substrate and mounting technologies to realize ultrathin, compact packages. This technology makes it possible to provide the desired circuit blocks in a short period of time.

In addition, this technology also allows SANYO semiconductors to provide a wide range of services that match customer needs, such as TR groups characterized by the three terms, "too small to be seen", "easy-to-use" and "intelligent."

Please contact your local SANYO sales office if you cannot find an appropriate product or for any inquiries on specification changes and new product development.

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other herein.
- Specifications of any and all SANYO products described or contained herein stipulate the performance. characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so circuits and error prevention circuits for safe design, redundant design, and structural design
- In the event that any or all SANYO products(including technical data,services) described or concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- SANYO Semiconductor Company carries out its designing, manufacturing and sale support in accordance with the global standard of quality management system ISO9001 (version 2000).
- All products described in this catalog contain developed products or products that are diverted from general types. In accordance with standard of quality management system ISO/TS16949 for automotive industry, there is a case where all demanded articles couldnÅft be supported, so please confirm to the salesman of our company at every order.

physical and/or material damage. Consult with your SANYO representative nearest you before using

parameters) listed in products specifications of any and all SANYO products described or contained

products or equipment. To verify symptoms and states that cannot be evaluated in an independent device,

that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective

contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities

New Technology 1 Bo morpowerful we charge Pump Circuit Chargepump

Utilizing every last drop of battery and cutting power consumption are the perennial twin issues in the development of mobile electronic devices. Now we find ourselves in the megapixel era, where those issues are more pressing than ever. With camera-equipped cellular phones sporting charge coupled devices (CCDs) beyond the million pixel level, mobile devices are on the verge of a huge transformation. And to make that leap, they need new power.

To provide that power, SANYO offers its unique new charge pump circuit. It's a low noise circuit that does not use coils, and that means a charge pump circuit that does not degrade image quality. Plus it can maintain over 90% efficiency despite a voltage step-up factor of three or higher. This new charge pump circuit, the world's first to deliver such outstanding performance, is already at work powering mobile devices ——— a paradigm shift on the move.

CONTENTS

The Switching Regulator Principle	3
The Switched Capacitor Principle	3
The Charge Pump Principle	4
Development Specification Proposal for Charge Pump Power Supply TEG & the Instruction Manual of X145 Evaluation	5 to 8
Development Specification Proposal for Charge Pump Power Supply TEG	10
Technical Explanation	11 to 14

The Old Way: A Switching Regulator

High noise level

Let's take a look at the methods that have been used to step up voltage so far. Think about the problem as the need to haul water uphill, to increase water pressure.

The first method is to catapult it up in one go. That's simple, and does get the water up there. But there is no way to prevent the considerable noise it generates and the headaches that causes about degradation of image quality, for example.

Switching-Regulator

The Old Way: Switched Capacitor

In the next method, players carrying the bucket of water keep climbing higher and higher on the shoulders of others. That eliminates worries about noise, but imposes a huge burden on the player at the bottom. What it takes to stand up under that strain is serious muscle: a high voltage transistor. But using one entails high impedance, which literally impedes the flow of current.

Solving the problems posed by the old methods **New Charge Pump**

Low noise level All players of equal strength (low voltage transistors)

And now we come to the newly developed charge pump circuit. One player draws water, then lifts it up one step and pours it into the next higher bucket.

The same lift and pour actions are performed by each of the players, so that there is no extra burden on any one of them. That means there is no need for a high voltage transistor somewhere in the circuit, and no extra impedance, so that a large current can flow. And, of course, only a few drops of water are spilled ----- it's very efficient.

Actually, in conventional charge pump circuits, the higher you step up, the larger the surface area of the step and the more effort needed to carry the bucket (that is, a higher voltage transistor is needed). That made that approach problematic for use in, for example, CCD power supplies. We found a solution that gets around that problem, thanks to some circuitry wizardry, and the result is our new charge pump circuit.

New

With the older method, it was a strain to haul the water handed up from the step below. Water often spilled, so that efficiency sank as the water was hauled higher. Our new method is designed to keep such spillage to an utter minimum.

Development Specification Proposal for Charge Pump Power Supply TEG & the Instruction Manual of X145 Evaluation Board

1 / Overview

The X145 Evaluation Board is a board for the charge pump TEG X145.

2 Features

- Input voltage range 3.2V to 5.5V internally regulated to 3V.
- Dual outputs positive and negative (Two charge pump channels).
- Charge pump boost VH channel 6X input voltage VH=+15V (5mA average current).
- Charge pump boost inverting VL channel -3X input voltage VL=-8V (10mA average current).
- Built in regulator for DSP applications 2.5V (45mA average current).
- Internal / external oscillator is selectable
- SELECT = VDD Internal oscillator
- SELECT = VSS External oscillator. External oscillator is fed to CLK pin and the input range is from VDD to VSS.
- Built-in soft start function thereby reducing of in rush current once the chip is activated through STBY pin.
- Built-in short circuit protection of the charge pump output circuit.

/ 3 / Case Outline

VQFN48

4 / Absolute Maximum Ratings at VSS=0V.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VBAT max		5.5	V
Operating temperature	Topr		-20 to 80	deg.
Storage temperature	Tstg		-40 to 125	deg.

5 / Recommended Operating Conditions at VSS=0V.

			and the second se	
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VBAT		3.2 to 5.5	V

6 / Electrical Characteristics

(Unless otherwise specified., VBATT=3.2V,VSS=0V,CLK=1MHz and Ta=25deg.)

Parameter	Symbol	Conditions	min	typ	max	Unit
Output voltage	VH			15		V
	VL			-8		V
	OUT1	Regulator only for input of charge pump		3		V
	OUT2			2.5		V
Maximum output current	IH_ave	Regulator output of 15V			5	mA
	IL_ave	Regulator output of -8V	-10			mA
	IO2_ave	Regulator output of 2.5V			45	mA
Electric power efficiency	Peff	2 channels charge pump output (include regulator)				%
External CLK frequency	fck-ext			1		MHz
Internal CLK frequency	fck-ext			1		MHz

1 / Completed Figure of Evaluation Board /

2 / Circuit Diagram of Evaluation Board /

3 / IC Block Diagram /

- * Approximate waveform of IDD (in rush current) as shown in item 1 to 6.
- 1. Waveform was due to Charging of the filter capacitor of the front regulator .
- 2. Waveform was due to Charging of the pump-up capacitor by the plus side driver.
- 3. Waveform was due to Stabilizing of the output of the plus charge pump voltage.
- 4. Waveform was due to Charging of the pump-up capacitor by the negative side driver.
- Waveform was due to Stabilizing of the output of the negative charge pump voltage.
- 6. Waveform was due to Charging of the filter capacitor of the output regulator.
- The graph shows the timing (2-6) generated by the built-in sequence circuit. This waveform was measured with CLK=1MHz.

5 / IC Pin Assignment /

7 / EV Board Pin Function /

Pin Name	I/O		
VBAT		Battery voltage input 3.2V to 5.5V	
VSS		GND pin	
TP1		High voltage output (-3VDD)	
TP2		Out2 regurator output 2.5V / 45mA	
TP3		Out1 regurator output 3V / 130mA	
TP4		VH High voltage output 15V / 5mA	
TP5		High voltage output (6VDD)	
TP6		External CLOCK input pin	
		SELECT=Lo : external CLOCK, S	
TP7		VL High voltage output -8V / 10m	
TP8	I	SLEEP signal input pin	
		Lo : Current dissipation in the slee	
		Hi: 2.5V and 3V generates.	
TP9	I	STBY signal input pin	
		Lo : Standby mode	
		Hi : 15V and –8V generates	

NO.	REF	VALUE	RATING
1	C1	2∝F	16V
2	C2	0.22∝F	16V
3	C3	0.22∝F	16V
4	C4	0.22∝F	16V
5	C5	1∝F	6.3V
6	C6	1∝F	6.3V
7	C7	1∝F	6.3V
8	C8	1∝F	16V
9	C9	1∝F	25V
10	C10	0.22∝F	16V
11	C11	0.22∝F	16V
12	C12	0.22∝F	16V
13	C13	0.22∝F	16V
14	C14	0.22∝F	16V
15	C15	0.1∝F	50V
16	C16	1∝F	16V
17	C17	0.1∝F	50V
18	R1	51ohm	-
19	SW1		-
20	SW2		-

6 / EV Board Parts List /

Function

- A average current
- (only for internal IC)
- average current

SELECT=VDD : internal oscillator)

A average current

ping mode is 1uA or less

8 / EV Board Switching and Jumper Function /

SW1	Switch for change-over in SLEEP mode
SW2	Switch for change-over in STBY mode
JP1	Jumper code for connection in between OUT1 to VDD (When battery voltage is input directly)
JP2	Jumper code selection clock for the operation of the IC.
	Lo : external CLOCK input, High : internal oscillator

9 / EV Board Operating Instructions /

Set-up

- 1. Connect a power supply to the VBAT pin and the VSS pin.
- 2. Change SW1(SLEEP) and SW2(STBY) into the OFF state.
- 3. When CLOCK is input from external IC, connect to the TP6 pin (it is terminated by 51ohm).
- 4. When the oscillator built-in the IC is used, change JP2 into the ON state.

Start-up procedure

- 1. Apply electric power from the external power supply to the VBAT pin.
- 2. Change SW1(SLEEP) into the ON state. Thus, OUT1(3V) and OUT2(2.5V) will rise.
- 3. Input external CLOCK.(*3)
- 4. Change SW2 (STBY) into the ON state. Thus, VH(15V) and VL(-8V) will rise.
- 5. When the short protection circuit works, the output of VH and VL were latched to OFF state, Please re-start the circuit via STBY pin
- (*3) This procedure is not required when the oscillator built-in the IC was used.

Shut-down procedure

- 1. Change SW2(STBY) into the OFF state.
- 2. Turn off the external CLOCK.(*3)
- 3. Change SW1(SLEEP) into the OFF state.
- 4. Turn off the external power supply.
- (*3) This procedure is not required when the oscillator built-in the IC was used.

Focus on the Infinite Potential of Mobile Devices

Cellular phones with megapixel built-in cameras —image quality to rival stand-alone digital cameras. Add our new charge pump circuit, and you have a match made in heaven. When we, acting on a suggestion from a customer, set about developing a practical application of our highly efficient charge pump circuit as a CCD power supply in cellular phones, our new product's ship had come in.

SANYO's new charge pump circuits power more than cellular phones. Digital cameras, camcorders, PDAs — they are finding applications in a growing range of products. Now as we check out our charge pumps' characteristics and continue to improve them by listening to comments from customers in a wide range of fields, we will explore their further potential. We hope they'll help give birth to a new generation of mobile devices that soar beyond the limits of conventional thinking.

10

Technology Overview

New Charge Pump Power Supply Circuit

Higher efficiency than ever before and support for multi-stage step up. The industry's first "battery solution"

ew high-efficiency n-stage step up charge pump circuit developed based on unique SANYO analog device technologies

SANYO has now, for the first time in the industry, developed a charge pump power supply circuit that maintains an efficiency of over 90% even at 3x and higher step-up ratios. This achievement was made possible by adopting unique SANYO-developed analog device technologies.

The demand for camera cell phones, digital cameras, PDAs, and other products that use CCD camera modules is increasing rapidly, and as the functionality of this equipment increases, the need for even lower power operation is growing stronger as well.

This new charge pump circuit, which is compact, efficient, and can generate high voltages, will be positioned as a strategic SANYO IP product, and SANYO is hopeful that this circuit will be adopted in a wide range of application areas.

Although the conventional charge pump circuit, which uses only capacitors and does not require inductors to increase the voltage, has superlative noise characteristics, its conversion efficiency results in large power losses making it problematic for use in low-power equipment such as portable digital equipment.

This new charge pump circuit that SANYO has now developed uses n capacitors for an n-stage step-up circuit, and uses charge transfer MOSFETs to charge those capacitors. This circuit provides the required supply voltages, both positive and negative, by repeating step up and charge transfer operations.

The step-up MOSFET gates are controlled by switching the arrangement of the capacitors, ground, and VDD with an appropriate timing (using clock signals). This results in the stepped-up charge being transferred to the adjacent capacitor. This allows stepped-up supply voltages to be generated with a high conversion efficiency (90 to 95%).

This new circuit, which generates minimal noise and can provide multiple supply voltages, is optimal for use in cell phone CCD camera chipsets.

Products using this technology have already been introduced to the market.

Since this circuit is noise free and is highly efficient in converting input power to the stepped-up voltages, circuit board shielding will not be required, even in application equipment that handles video. Furthermore, since this circuit will promote lower power, further miniaturization, and lower weight in application equipment, it increases design flexibility and can contribute to advances in end product styling and functionality. While the battery, which is a critical component in portable electronic equipment, must operate in harsh environments, the adoption of this new charge pump technology makes it possible to supply the various supply voltages required by the different modules used in this equipment.

This new technology both promises and delivers solutions to the power supply needs in future portable electronic equipment, from megapixel class camera cell phones to camcorders and digital cameras, and can provide drive power for LCD and white LEDs as well. SANYO is also planning to expand the range of applications to include general-purpose and other products, and is aiming at introducing new products as they are developed.

<Application Examples>

SANYO can provide, as semi-custom ICs, optimal power supply solutions for applications such as CCD, OLED, low-temperature polysilicon LCD, white light-emitting diodes, RF circuits, and multi-voltage power supply system IC products. SANYO is now developing ultraminiature package motor driver ICs and large-current charge pump power supplies optimal for the built-in power supplies in portable equipment, and is now looking into releasing general-purpose products using this technology.

- that require multiple supply voltages.
- ·Supports high output current designs.
- structure allows the use of n-channel MOSFETs for multiple purposes. This can achieve even lower impedance designs, and lower costs.
- technology. This prevents the occurrence of reverse currents and improves the power efficiency.
- voltages needed.
- •Can provide both positive and negative voltages in fine step-up voltage increments in multi-voltage power supply applications. This makes this technology optimal for CCD drive. Step up increments: +0.5 x n x VDD

-0.5 x n x VDD (Here, n is an integer.)

- •Conversion efficiency: Achieves a high efficiency of 90 to 95%. (See figure 1.) Generates no noise and thus applications do not require circuit board shielding. •Only thin-film capacitors required as external components. •Since this technology allows operation at high frequencies (up to 1 MHz), smaller external capacitors can be used.
- Typical capacitor height: 1 mm (0.1 μ F), 1.25 mm (1 μ F) •The development of a high breakdown voltage triple-well CMOS process allows this technology to reduce power consumption, improve insulating properties, and eliminate interfering noise.

SANYO has acquired or filed applications for patents in Japan, the US, and other countries for various aspects of this unique high-efficiency charge pump power supply technology.

Features and Specifications

•The adoption of an n-stage step-up circuit structure allows this circuit to handle applications

•High breakdown voltage MOSFETs are not used as the charge devices, but rather the circuit

•The charge transfer MOSFET switching timing is controlled by a unique SANYO control

•Function for step up in 0.5VDD increments allows this technology to provide any and all supply

New Charge Pump Circuit Principles of Operation (Three-stage step-up circuit)

A three-stage step-up circuit constructed using this new design uses a total of four capacitors, three for the individual stages and one smoothing capacitor, and four switching devices (MOSFETs). (Figure 2.)

The circuit iterates a sequence consisting of a charge cycle, in which charge is stored on a capacitor, and a charge transfer cycle, in which the charge is transferred to the adjacent capacitor. In this way, the charge is stepped up from C1 to C2, then from C2 to C3, then from C3 to the output smoothing capacitor C4.

Structure and Operation

Figure 3 shows the basic structure of a three-stage step-up type charge pump circuit. CLKB is the inverse of CLK, and CLK' and CLKB' are timing signals used to turn the charge transfer MOSFETs on or off at the point the clock signals change state. The LS circuits are level shifters. M1 to M4 are the MOSFETs that transfer the charge, C1 to C3 are the charge pump capacitors, and C4 is the smoothing capacitor. The charge generated from the VDD input as shown in figure 3 is transferred in order to C1, C2, C3, and C4, and is provided as the output voltage 4VDD. The potentials at the pumping nodes V1, V2, and V3 are increased by Vdd at each stage by switching the negative side potential of the capacitors C1, C2, and C3 from 0 V to Vdd with the clock signal, and the output is thus stepped up to 4VDD. MOSFETs are used as the charge transferring elements (M1 to M4 in figure 3). Conventional charge pump circuits have the problem that the power efficiency is reduced since the internal impedance of the charge transfer MOSFETs is high. This circuit structure has the feature that the required breakdown voltage in these charge transfer MOSFETs is reduced from 4VDD to 2VDD, and as a result, the impedance can be reduced easily. This allows the circuit to provide higher currents and allows the conversion efficiency to be improved, thus resolving the problems with conventional charge pump circuits.

In this circuit, the voltage amplitude at each pumping node is limited to about VDD, and the charge transfer MOSFET drain-source voltage (VDS) has a maximum of 2VDD. This maximum voltage difference remains at 2VDD even if the number of step-up stages is increased. The gate potentials are controlled by the level shifter circuits (LS1 to LS4). (Figure 4). The (a) diagram in figure 4 shows the noninverting circuit. When the input clock logic level is at the high level (VDD), the output level will be the high level, that is, the potential A. When the input clock logic level is at the low level (0 V), the output level will be the low level, that is, the potential B. The (b) diagram in figure 4 shows the inverting circuit.

The V1 to V3 potentials are stepped up an amount equal to the VDD supply voltage by the input clock (with levels of ground and VDD) frequency. (Figure 5)

Figure 4 Level Shifter Circuit Block Diagrams

Reverse Current Prevention

Conventional charge pump circuits have the problem that reverse currents flow from the output side during charge transfer MOSFET switching, resulting in reduced efficiency. These reverse currents occur due to slight shifts in the timing with which the charge transfer MOSFETs switch. In this newly-developed circuit, the operating timing of the clock rise and fall are adjusted and the timing is controlled so that all are off when the charge transfer MOSFETs switch. By setting the timing so that the clocks CLK and CLKB that drive the negative side of the capacitors to change at that point, the clocks that turn on the charge transfer MOSFETs are delayed relative to the timing with which the pumping nodes are switched on. This reliably prevents reverse currents from flowing and prevents power conversion loss.

0.5VDD Increment Step-up Function

In this newly-developed charge pump circuit, the capacitors used as the load at each stage have a split structure in which two capacitors with the same capacitance can be connected either in serial or in parallel using three switches. This allows this circuit to provide supply voltages with the fine voltage increment of 0.5VDD, in particular 2VDD, 2.5VDD, 3VDD, and 3.5VDD. (Figure 6)

High Step-up Efficiency

Figure 7 presents the step-up efficiency of a ±3x step-up charge pump circuit with external capacitances of under 1∞F and a clock frequency of 1 MHz.

The results of measuring the output voltage vs. load current characteristics show that this circuit can generate output voltages equivalent to ±3VDD with an input supply voltage of 3.3 V.

The results of measuring the step-up efficiency vs. load current characteristics show that this circuit achieves the high step-up power efficiency of over 80% when the load current is 40 mA and a power efficiency of over 75% when the load current is between 20 mA and 80 mA.

Although the efficiency drops somewhat to 72% when the load current is 100 mA, this could be improved by techniques such as reducing IC internal impedances by modifying the size of the transistors.

SANYO is aware of the wide range of functions that are expected to be included in the next generation of camera cell phones, functions such as autofocus systems, zoom lenses, and mechanical shutters, and is therefore working on developing products that provide even higher efficiency and higher currents based on this new technology. At the same time SANYO is also working to expand the range of applications for this technology to new fields.

ISB[®] is a type of SiP (System in Package), and is a module technology that can realize high-density, super-thin products through the use of original SANYO substrate and mounting technologies. The ISB[®] lineup includes three different processes (ISB-Solo[®], ISB-Duo[®], and ISB-Quad[®]) for various applications. These processes enable the creation of ISB[®] modules in a short period of time by assembling customer-specified circuit blocks as well as standard products using the optimum process.

ISB[®] process lineup

 A thickness of only 0.45 mm (0.65 mm if resistors are included) offers superlative thermal dissipation and makes it possible to shorten the development TAT.

Optimum for creating SiP from small-scale blocks that include semi-power portions.

Example assembly structure

Example application (cellular phone charger circuit block) Conventional mounting

ISB[®]

4.45×4.45×0.65 mm

ISB-Duo[®]

 Employs an originally developed 0.2 mm thick high-density substrate (2-layer wiring). (Line/Space: 40 µm/40 µm at a copper thickness of 25 µm, Via/Via Land: 100 µm/150 µmø) A package thickness of only 0.53 mm (0.73 mm if resistors are included) allows high-density mounting. Optimum for creating SiP from high-frequency blocks up to 10 GHz, blocks that require superlative performance and EMC measures based on the component layout and wiring, and blocks that require partial high-density mounting, etc.

Example assembly structure

Example application (clock detector block) Conventional mounting

ISB-Quad[®]

Employs an originally developed 0.24 mm thick high-density substrate (4-layer wiring).

- Optimum for creating SiP from high-frequency blocks up to 10 GHz, blocks that require superlative performance and EMC measures based on the component layout and wiring, and blocks that require high-density subsystem modules.
 - Chip on Board type

Example assembly structure

ISB, ISB-Solo, ISB-Duo and ISB-Quad are registered trademarks of SANYO Electric Co., Ltd

4.3×4.3×0.73 mm

• A package thickness of only 0.6 mm allows super-thin, high-density mounting.

ISB[®] Applied Products (Standard Products)

Super-thin, Compact 1-channel and 2-channel DC/DC Converter Power Supply

In addition to assembling ISB[®] devices from circuit blocks requested by customers, SANYO is also enhancing its lineup of standard ISB[®] products. Some examples of these are introduced below.

SR series

Step-up DC/DC controller ICs, n-channel power MOSFET and Schottky barrier diode devices can be combined into modules. simply by connecting an external voltage setting resistor, coil and capacitor. This makes it possible to easily configure a switching step-up power supply

Comparison of discrete mounting and ISB[®]

ISB®

Conventional mounting

2.5

Front surface

Block diagram (SR10010)

4.4×3.4×0.65 mm Mounting area 35% reduction

STK672-570

Unipolar constant-current chopper type (external excitation PWM) with built-in phase signal distributor

Specifications

Туре No.	Supply voltage 1	Supply voltage 2	Maximum output current	Size	Situation
STK672-570	10 to 44V	5V ±5%	1.0A	7.5×7.5×0.65 mm	ES samples available

Power Amplifier Module for 2.4 GHz Band Wireless LAN

Incorporating W-LAN functions is essential to support the rapidly evolving ubiquitous society. ISB[®] makes it possible to combine a power amplifier, matching circuits and an antenna (diversity) switch into a compact, super-thin PA module.

Appearance

4.8×4.6×0.73 mm

Series configuration

Туре No.	Number of channels	Туре	Oscillation frequency	Withstand voltage	Size	Situation
SR10010	1ch	Step-up type	180kHz	20V		ES samples available, MP support possible
SR10020			300kHz	20V		ES samples available, MP support possible
SR10030			180kHz	30V	3.4×3.4×0.65 mm	ES samples available, MP support possible
SR10110			100kHz	20V		Mass production underway
SR10210			100kHz	20V		Mass production underway
SR103XX		Step-down type	_	_		Under development
SR20010	2ch	±power supply type	180kHz	20V	5.0×5.0×0.65 mm	ES samples available, MP support possible

ISB is a registered trademark of SANYO Electric Co., Ltd.

Block diagram

Digital Camera Use LAS627W r= P 32 New product LAS6627W r= P 32 LAS66467 LAS66407 r= P 30 LAS6620W r= P 23 LAS6600W r= P 23 LAS6600W r= P 23 Under development LAS6620W r= P 31 LAS6620W r= P 32 LAS6620W r= P 32 LAS6620W r= P 32	Celuar Phone Use Image: Celuar Phone Use
© LA5680T [™] P 34	Car Audio Use
Battery Charger Use LA5614M F P57 LA5615M F P58 LA5619M F P58 LA5619M F P58 LA5619M F P58 LA5619M F P58 LA5621M	LA5624H 🖙 P 48 LA5657H 🖙 P 47
	Mini-Component Audio Use
VCR Use © LV5038M = P44 LA5611 LA5612 LA5613 = P50 LA5634 LA5644	LA5601 F= P49 LA5616 LA5617 LA5618 F= P51 LA5620 LA5632 LA5632 LA5643 LA5678H F= P5
Game Machine Use	Notebook Personal Computer
LA5648 IF P 45 LA5660M IF P 27 LA5662M IF P 28 OLV5040V IF P 37 OLV5042V IF P 39 OLV5043V IF P 40	LA5660M F= P 27 LA5662M F= P 28 LA5663V F= P 46 LA5664M F= P 29 (USB scanner)
D LV5047V F P 38	Discrete Devices for Power Supplies P 63 to 72

Use

Power Supply IC Lineup

SANYO Regulators

Switching RegulatorsP27 to 34
External Excitation Step-Down Switching Regulators P35 to 36
Synchronous Rectification Switching RegulatorsP37 to 40
Switching Regulator + Linear Regulator (multi-regulator)P41
Power IC for Portable CD PlayersP42
Cellular Phone System Power SuppliesP43
AC-DC Converter ControllersP44 to 45

Switching Regulators

Phase Control Piezo Inverter Control IC P46
System RegulatorsP47 to 52
Three-Terminal RegulatorP53
Watchdog Timer CircuitsP54
Dual Protection ICsP55
Rechargeable Battery Charge Control ICsP56 to 58
Series Regulators P59 to 62
O New product ★ Under development

JWILLIN	ing negatator	3						
Туре	Input voltage	Output voltage	Channels	Power stages	Package	Type No.	Notes	Р
Step up	1.8V to 14V	Programmable externally	1ch	External (NPN or NMOS)	MFP8 (225mil)	LA5660M		27
	1.8V to 11V	Programmable externally	1ch	External (PNP or PMOS)	MFP8 (225mil)	LA5662M		28
	1.8V to 11V	Programmable externally	3ch	External (PNP)	TSSOP36 (275mil)	LA5646T		
	1.8V to 11V	Programmable externally	3ch	External (PNP)	TSSOP36 (275mil)	LA5649T		30
	1.8V(1.2V) to 11V	Programmable externally	4ch	External (PNP)	SQFP48 (7 x 7)	LA5627W	Can operate from 1.2 V when the subsidiary power supply is used.	32
	5.5V to 30V	3.3V / 3A	1ch	Built in	SMP5	©LA5771MP		35
	7V to 30V	5V / 3A	1ch	Built in	SMP5	©LA5772MP		35
Step down	5.5V to 30V	3.3V / 3A	1ch	Built in	TO220-5H	©LA5751		36
	7V to 30V	5V / 3A	1ch	Built in	TO220-5H	©LA5752		36
	15V to 30V	12V / 3A	1ch	Built in	TO220-5H	©LA5753		36
	5.5V to 28V	Variable	1ch	Built in	TO220-5H	©LA5754		36
	5.5V to 30V	3.3V / 3A	1ch	Built in	SMP5	©LA5751MP		36
	7V to 30V	5V / 3A	1ch	Built in	SMP5	©LA5752MP		36
	15V to 30V	12V / 3A	1ch	Built in	SMP5	©LA5753MP		36
	5.5V to 28V	Variable	1ch	Built in	SMP5	©LA5754MP		36
Mixed	1.8V to 11V	Programmable externally	3 channels (1 step-up and 2 step-down channels)	External (NPN,PNP or NMOS,PMOS)	TSSOP36 (275mil)	LA5679T		31
step up	1.8V to 8V	Programmable externally	4 channels (2 step-up and 2 step-down channels)	External (NPN,PNP or NMOS,PMOS)	TSSOP36 (275mil)	LA5683T		33
/step down	1.5V to 12V	Programmable externally	6 channels (4 step-up and 2 step-down channels)	External (NPN,PNP or NMOS,PMOS)	TQFP48J (7 x 7)	©LA5680T		34
Step up/ down	4V to 5.6V	5V/250mA	1ch	Built in	MFP14S (225mil)	LA5664M		29
Step up +	8.5V to 18V	Programmable externally	5ch	External (NPN or PMOS)	SSOP30 (275mil)	* LV5045V		41
lenear regurator	1.5V to 4.4V 2V to 8.0V	2.5 V (step up / down) 2.8V / 3.9A (linear)	3ch	Built in	TSSOP24 (225mil)	LV5051T		42
Inverter voltage	4.5V to 23V	Programmable externally (current)	1ch	External	SSOP24 (275mil)	LA5663V		46

Synch	Synchronous Rectification Switching Regulators													
Туре	Input voltage	Output voltage	Channels	Power stages	Package	Type No.	Notes	Ρ						
_	10V to 14V	Programmable externally	2ch	External (NMOS)	SSOP30 (275mil)	©LV5040V		37						
Sten un	4.5V to 36V	Programmable externally	2ch	External (NMOS)	SSOP30 (275mil)	*LV5042V		39						
	4.5V to 16V Programmable 2ch		2ch	External (NMOS)	SSOP30 (275mil)	*LV5043V		40						
	5.5V to 18V	Programmable externally	1ch	External (NMOS)	SSOP16 (225mil)	*LV5047V		38						

Cellular Phone System Power Supplies

		J							
	Regulator	output vol	tage(V) /cu	rrent(mA)	Absolute rati	maximum ngs			
Type No.	1	2	3	4	Input voltage	Total power dissipation	Package	Functions/Features	P
© LV5105FN	2.8V/ 150mA	2.6V/ 100mA	2.85V/ 50mA	3V/ 50mA	5.9	0.44	VQFN48 (7 x 7)	Detection circuits, 3-color LED driver, white LED driver, and microphone bias output	43

Car Audio System Pegulators

Cal Au	uo sys		eyulati	015									
Trues Nie	Regul	ator outp	ut voltage	e(V) /curre	nt(mA)	Absolute maximum ratings			Functions/Features				
туре мо.	1	2	3	4	5	Input voltage	Total power dissipation	Package	On/off function	Reset output	Notes	P	
LA5657H	10V/ 2200mA	5V/ 1400mA	5V/ 30mA	8V/ 30mA	8V/ 200mA	24	2.01)1 HSOP28H (375mil)			 Low saturation-voltage 10 V/2.2 A and 5 V/1.4 A outputs can be implemented 		
	5V/ 100mA	3.25V/ 100mA	SW/ 100mA	SW/ 250mA	OP-C/ 10mA				0 0	using external pnp transistors. •The on/off state of the IC can be controlled using the STBY and	47		
	OP-C/ 10mA	OP-C/ 10mA	OP-C/ 10mA								 Includes three built-in reset detection systems. 		

System Regulators

- N	Regul	ator outp	ut voltage	e(V) /curre	ent(mA)	Absolute rati	maximum ngs			Funct	ions/Features		
Type No.	1	2	3	4	5	Input voltage	Total power dissipation	Package	On/off function	Reset output	Notes	ר	
LA5601	5.2V/ 250mA	3.4V/ 10mA				15	1.0	DIP10S (300mil)	0	0	Built-in drivers	49	
LA5602	5.0V/ 350mA					18	1.5	SIP7H					
LA5605	7.5V/ 500mA	9V/ 60mA	5V/ 10mA			24	2.0	SIP13H	0		Built-in AC standby and power detection functions		
LA5606N	15.7V/ 350mA	12V/ 200mA	9V/ 150mA	5V/ 500mA		35	4.3	SIP14H	0				
1 45609	14.5V/ 1200mA	9V/ 300mA	7.5V/ 800mA	5.05V/ 220mA	5V/ 220mA	24	3.5	SIP18H	0	\bigcirc	Built-in mode switch, power control, and remote control		
LAJ007	5V/ 100mA	8V/ 800mA	9V/ 60mA			27	3.5			0	standby functions		
LA5611	9V/ Within ASO of external TR	5.05V/ 480mA	5.05V/ 240mA	5.7V/ 48mA		22	2.0	SIP13H	0		Built-in switching regulator control amplifier		
LA5612	14.5V/ 360mA	5.05V/ 420mA	5.05V/ 420mA			22	2.0	SIP13H	0		Two built-in control amplifiers		

Power Supply IC Lineup

System	Regul	ators										
T Ma	Regula	ator outpu	it voltage	(V) /curre	nt(mA)	Absolute rat	maximum ings			Func	tions/Features	
туре No.		2	3	4	5	Input voltage (V)	Total power dissipation (W)	Package	On/off function	Reset output	Notes	P
LA5613	5.1V/ 700mA	SW/ 300mA				14	1.7	SIP10F	0		Built-in 11.3V/0.3A ripple filter and switching regulator control amplifier	50
LA5616	5V/ 400mA	7V/ 1000mA				18	2.0	SIP10F	0	0	The 5 V regulator is a low dropout voltage circuit.	
LA5617	7.5V/ 1500mA	-7.5V/ -1500mA				±18	2.0	SIP10F	0		Positive and negative voltage tracking regulator	
LA5618	7.5V/ 1500mA	-7.5V/ -1500mA				±18	2.3	SIP12H	0		Positive and negative voltage tracking regulator	51
LA5620	3.3V/ 40mA	3.3V/ 150mA	5V/ 100mA	5V/ 1000mA		14	2.3	SIP12H		0	Power on/off detection circuit	
	5V/ 50mA	10V/ Within ASO of external TR	8V/ 100mA	8V/ 30mA	8V/ 150mA						A low saturation-voltage	
LA5624H	8V/ 100mA	5V/ 100mA	5V/ 300mA	SW/ 100mA	SW/ 100mA	24	2.01	HSOP28HC (375mil)	0	0	implemented using an external pnp transistor. The on/off state of the IC can be controlled using	48
	OP-C/ 10mA	OP-C/ 10mA	OP-C/ 10mA	OP-C/ 10mA							control data.	
LA5632	3.3V/ 60mA	3.3V/ 150mA	5V/ 1000mA	5V/ 100mA		14	2.3	SIP12H	0	0	Power on/off detection circuit	
LA5634	5.1V/ 1700mA	SW/ 500mA				14	1.7	SIP10F	0		V _{CC} 1-1 V/0.5 A ripple filter switching regulator control amplifier built in	
	5V/ 50mA	10V/ Within ASO of external TR	8V/ 200mA	8V/ 30mA	8V/ 150mA						A low saturation-voltage 10 V regulator can be	
LA5635H	8V/ 100mA	5V/ 100mA	5V/ 300mA	SW/ 100mA	SW/ 500mA	24	2.01	HSOP28HC (375mil)	0	0	implemented using an external pnp transistor. The on/off state of the IC can be controlled using	
	OP-C/ 10mA	OP-C/ 10mA	OP-C/ 10mA	OP-C/ 10mA							the STBY pin and serial control data.	
LA5643	3.5V/ 150mA	5V/ 1000mA	5V/ 100mA			14	2.0	SIP13H		0		
LA5644	5.1V/ 1700mA	SW/ 500mA				14	1.7	SIP10F	0		V _{CC} 1-1 V/0.5 A ripple filter switching regulator control amplifier built in	
LA5678H	3.0V/ 100mA	3.0V/ 50mA	3.3V/ 150mA	3.5V/ 50mA		9	0.79	HSOP28HC (375mil)	0		Built-in 1.5 channel forward/reverse motor driver The regulator output 1 can be switched from 3.0 to 3.4 V with a switch.	52

Power Supply ICs with Built-in Watchdog Timer Circuits												
	Absolute	maximum				Fun	ctions					
Type No.	Input voltage (V)	Total power dissipation (W)	Package	Reset logic output	Reset hold	5 V regulator control	Regulator output on/off control	Edge detection	Watchdog time typical (Ct = 2 ∝F)	Р		
LA5690D		0.5	DIP8 (300mil)	Noninverted/				\bigcirc	5ms			
LA5690S	41	0.5	SIP9	inverted				0	51115			
LA5691D	44	0.5	DIP8 (300mil)	inverted				0	Fmo			
LA5691S	41	0.5	SIP9	invented				0	oms			
LA5692D		0.5	DIP8 (300mil)									
LA5692S	41	0.5	SIP9	inverted	inverted	0	0		0	40ms		
LA5692M		0.37	MFP8 (225mil)									
LA5693D	44	0.5	DIP8 (300mil)	invorted					10ma	E 4		
LA5693M	41	0.37	MFP8 (225mil)	invented					401115	54		
*LA5694M	20	0.37	MFP8 (225mil)	inverted	0	0		0	40ms			

Dual Pro	otecti	on IC	S		
Type No.	Absolute rati Input voltage (V)	maximum ngs Total power dissipation (W)	Package	Functions/Features	P
LA5695M	18	0.4	MFP14 (225mil)	 Built-in supply voltage abnormality detection circuit Driver output with built-in output delay circuits Allows control from 8 input pins. 	55

Power Supply IC Lineup

O New product

Rechargeable Batter	y Charge C	ontro	ol ICs			
Battery Type	Type No.	Absolute rati Input voltage (V)	maximum ings Total power dissipation (W)	Package	Functions/Features	Р
Nicad, nickel-metal-hydride	LA5614M	9	0.25	MFP10S (225mil)	Charging voltage detection, switching between cycle and trickle charging, charge current is set with an external resistor.	57
Lead	LA5615M	45	0.7	MFP16FS	Switching between cycle and trickle charging, voltage and current detection.	58
	LA5619M	15	0.7	(300mil)	Switching between cycle and trickle charging, voltage and current detection.	58
Lithium ion	LA5621M	44	0.32	MFP14 (225mil)	Current and voltage detection	
	LA5621V	11	0.25	SSOP16 (225mil)	Current and voltage detection, modified package version of the LA5621M	
Lithium ion, nickel-metal-hydride	© LA5636M	14.5	0.36	MFP10S (225mil)	High-accuracy reference current (92.5 ∝A ±2.7%)	56
Dattany charger	© LA5645M		0.3	MFP8 (225mil)	High-precision reference voltage (1.5 V \pm 1 %), input offset voltage (2 mV max)	
Dattery chargel	LA5645T	14.5	0.2	MSOP8 (150mil)	High-precision reference voltage (1.5 V \pm 1 %), input offset voltage (2 mV max)	

 $_{m{*}}$ Under development

AC-DC	Convertei	r Controllers			
Type No.	Package	Functions	V _{CC} (V)	Features	Ρ
LA5648	DIP8 (300mil)	RCC/external excitation flyback AC-DC converter controller	30	UVLO, primary side P-by-P OCP, secondary side timer OCP	45
*LV5038M	MFP10S (225mil)	AC-DC converter auxiliary power supply controller	30	UVLO, primary side P-by-P OCP, built-in intermittent oscillation transmitter	44

Serie	es Regula	tors																								
Тура		Output							Ou	ıtpı	ut v	olta	age	(V)								Absolute rati	maximum ings	Dackago	Features	
туре	туре мо.	(A)	1.8	2	2.5	3	3.3	3.4	3.5	4	5	6	7	8	9	10	12	15	18	20	24	voltage (V)	dissipation (W)	Гаскауе	i catares	P
	L78M00T	0.5									0	0	0	0	0	0	0	0	0	0	0	35	1.0	ТРЗН		
	L78MS05J	0.5																				25	1.75	TO220-5H	Built-in on/off	
Positive	L78MS05J -SMP	0.5																				- 35	2.0	SMP5	function	
voltage	L780S00	1.0									0	0	0	0	0	0	0	0	0	0	0	35	1.75	TO220-5H	Built-in on/off function	
	L88M00T	0.5					0		0		0	0			0		0					18	1.0	ТРЗН	Low dropout- voltage	53
	L88MS00T	0.5					0	0		0	0	0		0	0		0					18	1.0	TP5H	On/off function Low dropout- voltage	

Continued on next page

Serie	es Regula	tors																							
-		Output						0	utp	ut v	olta	age	(V)								Absolute rati	maximum ngs		England	
Гуре	Type No.	current (A)	1.8	2	2.5	3	3.3	.4 3.	5 4	5	6	7	8	9	10	12	15	18	20	24	Input voltage (V)	Total power dissipation (W)	Package	Features	Ρ
	LA5000	0.06		0		0			0	0											12	0.56	SIP4H	Low dropout- voltage,	
	LA5000M	0.00		0		0			0	0	0		0	0	0						12/16	0.3	MFP8 (225mil)	noise suppre- ssion pin	
Positive	L78LR05	0.45																			25	1.0	TP5H	Provides a reset function,	60
voltage	785 <i>*</i>	0.15																			25	0.16	MSOP8	available as ranked products	61
	L78MR00	0.5								0	0		0	0		0					35	1.75	TO220-5H	Reset function	62
	L88R05	1.0								0											18	2.75	ТО220-5Н	Low dropout- voltage, provides a reset function, available as ranked products	59
Negative voltage	L79M00T	0.5								0	0		0	0	0	0					-35	1.0	ТРЗН		

Dedicate	ed Reset M	ultifu	nction Re	egulator ICs	
Type No.	Absolute maxim ratings Supply voltage (V)	um Total power dissipation (W)	Package	Functions/Features	Ρ
LA5623M	-0.3 to +12	0.25	MFP8 (225mil)	 Reset circuit that detects the input voltage and provides a 200 s delay time (output 1). System reset circuit with switchable delay times of 25, 50, 100, and 200 ms (output 2). Low minimum operating voltage Both resets (1 and 2) provide hysteresis in their operating voltage. 	
LA5608M	10	0.3	MFP14 (225mil)	 Power supply monitor (HALT) signal generation Microcontroller reset signal generation Microcontroller interface bus Makes it easy to prevent incorrect operation when the power supply voltage is lost temporarily. Built-in microcontroller interface bus for easy interface with microcontrollers. 	

Shunt R	egulato	ors				
Type No.	Cathode current (mA)	Output voltage setting range (v)	Absolute ratii Input voltage (V)	maximum ngs Total power dissipation (W)	Package	
L5431	1 to100	Vref to 36	37	0.75	NP	Н

 Functions/Features
 P

 High-precision variable shunt
 Image: State of the state

Switching Regulators LA5660M

Application

Single-channel general-purpose switching regulator IC

Functions/Features

- Operates from 1.8 V.
- Upconverter operation
- On/off control function

Switching Regulators LA5662M

Application

Single-channel general-purpose switching regulator IC

- Operates from 1.8 V.
- Downconverter operation
- On/off control function

Switching Regulators LA5664M

Application

Voltage step up/down switching regulator IC

Functions/Features

- Built-in 5.7 V switching regulator circuit
- Supports on/off control.
- Soft start function
- One 5 V low saturation-voltage regulator circuit (IO = 250 mA)

Switching Regulators LA5649T

Application

Three-channel switching regulator IC for digital cameras

- Supports low-voltage operation, minimum: 1.8 V.
- Includes independent standby circuits for each of the three channels.
- Reference voltage accuracy: ±1%

Switching Regulators LA5679T

Application

Block

Three-channel switching regulator for digital cameras

Functions/Features

- Supports low-voltage operation, minimum: 1.8 V.
- OUT1 drives an external pnp transistor.
- OUT2 and OUT3 drive external npn transistors.
- Includes independent standby circuits for each of the three channels.
- Reference voltage accuracy: ±1%
- Capable of driving MOS transistors

Switching Regulators LA5627W

Application

Four-channel switching regulator IC for digital cameras

- Supports low-voltage operation, minimum: 1.8 V. (When the internal subsidiary-supply is not used.)
- Supports operation at voltages as low as 1.2 V when the internal subsidiary-supply is used.
- Includes independent standby circuits for each of the four channels.

Switching Regulators LA5683T

Application

Four-channel switching regulator IC for digital cameras

Functions/Features

- Supports low-voltage operation, minimum: 1.8 V.
- OUT1 and OUT2 drive external pnp transistors
- OUT3 and OUT4 drive external npn transistors
- Includes independent standby circuits for each of the four channels.
- Reference voltage accuracy: ±1%
- Capable of driving MOS transistors
- The channel 2 dead time is fixed internally, the preset duty cycle is 100%.
- (Channels 1, 3, and 4 are set externally.)

Switching Regulators LA5680T

Application

Six-channel switching regulator control IC

- Supports low-voltage operation (minimum: 1.5 V).
- Reference voltage precision: ±1%
- Independent six-channel standby circuit
- OUT1 and OUT2 drive external pnp transistors
- OUT3 to OUT6 drive external npn transistors
- Outputs can drive MOS transistors.
- Channels 1 and 2 have an internally fixed dead time and a set duty of 100%.
- Channels 3 to 6 have an internally fixed dead time and a set duty of 85%.

External Excitation Step-Down Switching Regulators LA5771MP/72MP

Application

External excitation step-down switching regulator ICs

Functions/Features

- High efficiency
- Only 4 external parts required
- Built-in reference oscillator (160KHz)
- Current limiter circuit
- Thermal shutdown circuit
- Soft start circuit
- Wide input voltage range: up to 30V
- IOmax: 3A
- Vout 3.3V (LA5771MP) 5V (LA5772MP)

External Excitation Step-Down Switching Regulators LA5751/52/53/54 LA5751MP/52MP/53MP/54MP

Application External excitation step-down switching Ø 3.6 regulator ICs **Functions/Features** High efficiency • Only 4 external parts required Built-in reference oscillator (60KHz) LA5751/51MP, LA5752/52MP LA5753/53MP Built-in reference oscillator (120KHz) LA5754/54MP • Current limiter circuit • Thermal shutdown circuit Soft start circuit • Wide input voltage range: up to 30V • IOmax: 3A Vout 3.3V (LA5751/51MP) 5V (LA5752/52MP) 12V (LA5753/53MP) Variable (LA5754/54MP) Block Diagram

(+)

┦┦╹ ┥┝┳┤┝┳┤

LA5751/52/53/54

LA5751MP/52MP/

53MP/54MF

Synchronous Rectification Switching Regulator

LV5040V

Application

Two-channel general-purpose switching regulator IC

Functions/Features

- Two-circuit input step-down DC-DC converter controller
- Input undervoltage lockout (UVLO) circuit, overcurrent detection function, and overtemperature detection function, soft start/soft stop functions, startup delay circuit
- Output voltage monitoring functions (Supply voltage check, overvoltage protection, and undervoltage protection with timer latch functions)
- Interleaved operation with 180° between phases 1 and 2 (Also supports multiphase operation with the two phases operating in parallel.)
- Supports synchronous operation between devices with differing types. (Supports master-slave operation when multiple devices are used.)

Synchronous Rectification Switching Regulator LV5047V Under developmen

Application

Synchronous rectification step-down DC-DC converter controller IC

Features

- Synchronous rectification step-down DC-DC converter controller
- Input undervoltage lockout (UVLO) circuit, pulse-by-pulse overcurrent detection function, soft start/soft stop functions
- Function to prevent simultaneous conduction of both top and bottom MOSFETs
- PGOOD output, built-in bootstrap circuit
- · Construct synchronous rectification converter circuit with less external components

Synchronous Rectification Switching Regulator

LV5042V

Under development

Application

Two-channel step-down DC-DC converter controller IC

Features

- Two-channel step-down DC-DC converter controller
- Input undervoltage lockout (UVLO) circuit, overcurrent detection function, soft start/soft stop functions, and startup delay circuit
- Output voltage monitoring functions (power good function and undervoltage protection with timer latch functions)
- Interleaved operation with 180° between phases 1 and 2
- Supports synchronous operation with external devices (Supports master-slave operation when multiple devices are used.)

Synchronous Rectification Switching Regulator LV5043V Under development

Application

Two-channel step-down DC-DC converter controller IC

Features

- Two-channel step-down DC-DC converter controller
- Input undervoltage lockout (UVLO) circuit, overcurrent detection function, soft start/soft stop functions, and startup delay circuit
- Output voltage monitoring functions (power good function and undervoltage protection with timer latch functions)
- Interleaved operation with 180° between phases 1 and 2
- Supports synchronous operation with external devices (Supports master-slave operation when multiple devices are used.)

Switching Regulator + Linear Regulator (multi-regulator) LV5045V Under development

Application

Set-top box power supply IC

Features

- 5 power supplies Switching regulator (Shottky rectifier): 2 Reverse charge pump: 1 Linear regulator: 2
- Power good functions
- Under (no) voltage delay (UVD) circuit
- Thermal protection circuit
- Soft start function

Power IC for Portable CD Players

LV5051T

Application

Power IC for portable CD players

Features

- 2.5V step-up/down DC-DC converter
- VG step-up circuit for power MOSFET driving
- 2.8V/3.9V regulator control circuit (with switching terminal)
- Undervoltage lockout (UVLO) circuit (PVCC1)
- ACDET detection output terminal
- Microcontroller RESET output terminal
- 2.5V (OUT2) pin control input terminal

Cellular Phone System Power Supplies LV5105FN

Application

Cellular phones

Functions/Features

- Includes four regulator circuits (CMOS outputs).
- Built-in detection circuits
- (One for REG1 and one for VBAT (with reset output)) • Three-color LED drivers (with charge pump 5 V output)
- Front LED driver
- Microphone bias output
- Thermal protection circuit

Application

Auxiliary power supply AC-DC converter controller

- PWM operation based on external excitation and reset signals.
- Built-in intermittent operation switching function
- Fixed-duty intermittent operation switching function
- Under-voltage-lockout function built-in
- P-by-P primary side OCP detection circuit

AC-DC Converter Control ICs

LA5648

Application

RCC/external excitation AC-DC converter controller

Functions/Features

- RCC power supply controller
- Primary side overcurrent detection function (P-by-P)
- Built-in UVLO circuit
- Secondary side overcurrent detection (with timer)
- Base winding voltage detection function

Phase Control Voltage Inverter Control IC LA5663V

Application

Control of phase control type voltage inverters

- Phase control technique allows the voltage transformer to be driven at a frequency that provides excellent efficiency.
- The phase can be adjusted with an external resistor.
- Allows burst adjustment.
- Full complement of built-in protection circuits, including overvoltage protection and tube current detection and protection
- High-precision reference voltage system. VREM precision: ±1%
- The on/off state of the VREM circuit can be controlled independently

System Regulators LA5657H

Application

Car audio equipment

Functions/Features

- 10 V and 5 V regulators (using external pnp transistors) that provide a standby (on/off) function.
- CCB controlled 8 V (two channels), 5 V, 3.25 V, and 5 to 9.7 V (settable with an external resistor) outputs, four open-collector output channels and two channels with V_CC linked output
- Three built-in reset systems (A_{CC}, V_{DD} [with delay circuit], and battery)
- Full complement of built-in protection circuits
- ·For outputs other than the open-collector and reset outputs : overcurrent protection
- ·Thermal protection for all outputs except the reset output

System Regulators LA5624H

Application

Car audio equipment

- 5 V/50 mA regulator
- (always on, built-in reverse current protection)
 With standby (STBY: on/off control) function 10 V/2 A regulator (with external 2SB921 pnp transistor)
- Multiple regulators with shift register/latch based on/off control (four-output 8 V system, single-output 5 V system), four open-collector output systems, and two emitter-follower output systems
- Full complement of built-in protection circuits Overcurrent protection for all outputs except the open-collector outputs
- ·Thermal protection for all outputs except the V_{DD} 5 V output

System Regulators LA5601

Application

Microcontroller system monitoring power supply for CD players

Functions/Features

- Low saturation-voltage regulator (main power supply)
 5.2 V/250 mA
- Generates a power supply reset signal.
- Darlington driver: 120 mA
- Auxiliary power supply: 3.4 V/10 mA
- The main power supply and the driver circuit can be turned on/off at the same time (active high).
- The 5.2 V output features a low minimum I/O voltage difference (0.3 V typical).
- The reset delay time can be set with an external capacitor.
- The driver can be used to generate negative voltages.
- The auxiliary power supply circuit includes a built-in reverse current element diode, and thus is appropriate for use in a backup power supply.

System Regulators LA5613

Application

VCRs and other AV equipment

- 5.0 V/0.7 A low saturation-voltage regulator (with on/off function)
- 11.3V/0.3 A ripple filter
- Switching regulator control amplifier
- \bullet Built-in input (V_CC2) overvoltage and thermal protection circuits
- Thermal protection circuit

System Regulators LA5618

Application

Mini-component stereo systems and other audio equipment

Functions/Features

- Positive and negative voltage tracking regulator : ±7.5 V/±1.5 A (on/off control function)
- System power supplies for microcontroller controlled mini systems
- Sequence control at power on can be implemented easily.
- This device is provided in an SIP-12H package, which allows a higher Pd to be acquired when a heat sink is used.

Application

Audio equipment, MD players, and similar products

- Regulator circuit (I_O = 100 mA) that provides a pin for switching between 3.0 and 3.4 V
- One 3.0 V regulator circuit ($I_{O} = 50 \text{ mA}$)
- One 3.3 V regulator circuit (IO = 150 mÅ)
- One 3.5 V regulator circuit ($I_0 = 50 \text{ mA}$)
- The on/off state of each regulator circuit can be controlled independently.
- Built-in 1.5-channel forward/reverse motor driver

Three-Terminal Regulators L88M00T

Application

0.5 A low dropout voltage regulator

Functions/Features

- Low dropout voltage regulator
- Output voltages L88M18T: 1.8 V, L88M25T: 2.5 V, L88M33T: 3.3 V, L88M35T: 3.5 V, L88M05T: 5 V, L88M06T: 6 V, L88M09T: 9 V, L88M12T: 12 V
- Output current of 500 mA provided
- Low minimum I/O voltage difference (0.4 V typical) supports energy saving designs and the use of smaller transformers.
- Provided in the TP-3H miniature power package for easy end product miniaturization
- The allowable power dissipation can be increased by surface mounting on a printed circuit board.
- Wide range of formed versions available for mounting flexibility

Power Supply ICs with Built-in Watchdog Timer Circuits LA5693D/M

 \cap

Application

Microcontroller system monitoring in automotive, cooling/heating equipment, and office equipment applications

- 5 V output voltage power supply controller
- Built-in watchdog timer
- Power supply reset signal generation function
- Two reset/hold outputs
- A low saturation-voltage regulator can be formed by using an external pnp transistor.
- CK input does not contain a built-in
- edge detection circuit for greater design flexibility.
- Variable reset detection voltage
- Relatively long watchdog time (as compared with the LA5690/5691) • Built-in 10 k Ω pull-up resistor in the $\overline{\text{RES}}(1)$ output circuit

Dual Protection ICs LA5695M

Application

Cooling/heating equipment and office equipment applications

Functions/Features

- Built-in supply voltage abnormality detection circuit
- Driver output with built-in output delay circuit
- Can control using 8 input pins.

Rechargeable Battery Charge Control ICs LA5636M

Application

Lithium ion and nickel-metal-hydride battery chargers

Functions/Features

- Built-in circuit that prevents system malfunctions when the input voltage (car battery voltage) falls.
- Provides a constant voltage output that is proportional to a PWM input signal. (The output voltage can be controlled by the system microcontroller.)
- High-accuracy reference current (current control amplifier): 92.5 µA ±2.7%
- The output voltage can be set with an external resistor.
- Independent voltage and current amplifier loops
- Since this IC provides only the basic functions (constant voltage and constant current control) required in a battery charger IC, it can easily be used together with other battery charger ICs.

• This IC is a DC-DC converter secondary side control IC that uses the automotive power supply (car battery).

Rechargeable Battery Charge Control ICs LA5614M

Application

Battery chargers for NiCd and nickel-metal-hydride batteries

Functions/Features

- External battery transistor drive circuit
- Secondary battery charge voltage detection circuit
- Charge on/off control function On: cycle charge, Off: trickle charge
- Cycle charge current setting circuit
- Trickle charge current setting circuit
- For use with Nicad and nickel hydride rechargeable batteries (supports up to 3 cells). Microcontroller charge control (Charging conditions depend on the battery specifications.)
- Supports switching between cycle charge and trickle charge.
- Charge current can be set with an external resistor.

Rechargeable Battery Charge Control ICs LA5615M/19M

Application

Lead-acid battery charger with battery voltage detection function

Functions/Features

- Secondary battery charging circuit
- Charge current control circuit
- (set with an external resistor: 125 mA typical) • Circuit for switching between cycle charge and trickle charge (charge current detection level: 40 mA) Charge voltage: Cycle charge voltage VO1=4.6 V, trickle charge voltage VO2=4.9 V
- Battery voltage detection circuit and battery on/off circuit
- Charge on/off circuit
- For secondary lead-acid (SLA) batteries (supports up to 2 cells). Charge characteristics appropriate for lead-acid batteries (Charging conditions can be set according to the battery specifications.)
- The charge voltage is switched when switching between cycle charge and trickle charge.
 LA5619M differs from the LA5615M in that the battery voltage detection circuit has been modified and
- hysteresis has been added.

Refer to the data sheet for the LA5619M specifications (Data sheet ordering number: ENN5673)

Series Regulators L88R05

Application

Low saturation-voltage constant voltage power supply with reset function

Functions/Features

- Low saturation-voltage regulator: 5 V/1 A
- Microcontroller reset signal generation function
- Full complement of built-in protection circuits
- Low minimum I/O voltage difference (0.5 V typical)
- Three reset threshold voltage rankings provided: C, D, and E
 C: V_{RT} = 4.5 V, D: V_{RT} = 4.2 V, E: V_{RT} = 3.9 V
- Delay time can be set using an external capacitor.
- TO220-5H package adopted for easier mounting and thermal design

Series Regulators L78LR05

Application

Constant voltage power supply with reset function

- Regulator: 5 V/150 mA
- Microcontroller reset signal generation function (Ranked according to the reset threshold voltages V_{RT}) :See page 52(785).
- Battery backup function
- Wide range of V_{RT} rankings to support a variety of microcontrollers
- Delay time can be set using an external capacitor.
- No reverse current prevention diode required for battery backup
- Wide range of formed versions available for mounting flexibility
- Pd can be increased significantly by thermal design when used in surface mounting configuration.

flexibility hen used in surface mounting configuration.

Series Regulators

785*

Application

Constant voltage power supply with reset function

Functions/Features

- Modified package version of the L78LR05
- The table below lists the reset threshold voltages V_{RT} ranking for the 785^{*} series products.

V _{RT} ranking	в	С	D	Е	F	G	н
V _{RT} (V)	4.8	4.5	4.2	3.9	3.6	3.3	3.0

 Ultraminiature thin form factor package for easier high-density mounting

Series Regulators

Application

Constant voltage power supply with reset function

Functions/Features

- Reset (Power supply voltage monitoring : Generates a reset signal at power on and at temporary voltage drops.)
- Output voltages L78MR05 : 5V (Reset output: with a built-in pull -up resistor)

L78MR06 : 6V (Reset output: open collector) L78MR08 : 8V (Reset output: open collector) L78MR09 : 9V (Reset output: open collector)

Discrete Devices for Switching Power Supply and Charger

SANYO Discrete Devices

Environmentally Considered Products

Environmentally Considered Products

Overview

SANYO discrete devices are environmentally friendly and can be employed in microprocesses and new processes to make equipment in a wide variety of fields smaller, lower form factor, more efficient and more reliable.

Multi-function Devices

- ExPDs
- Si MMICs
- PicoLogic[™]

Power Devices

- Horizontal deflection output transistors
- High withstand voltage switching transistors
- High withstand voltage Darlington transistors
- High withstand voltage power MOSFETs
- High withstand voltage diodes
- Dynamic focus transistors

High Frequency Devices

- Ultrahigh frequency transistors
- GaAs devices
- Varactor diodes
- JFETs
- PIN diodes
- PicoGET

General-purpose Devices

- · High-speed switching transistors
- Switching transistors
- Resistor built-in transistors
- Muting transistors
- Rectifier diodes

Medium-Power Devices

- Ultralow saturation transistors
- Ultralow on-resistance power MOSFETs
- Low VF Schottky barrier diodes
- PicoMOS[™]
- PicoTR
- PicoSBD[™]

Discrete Devices for Portable Equipment, PCs and Power Supplies

Generation III Low-saturation Transistor MBIT-III

Can be used for a wide range of power supply line Operation voltage: 3 to 25V

Mountir	ng Comp	arison	for EC	Pack	kage
	ECSP-1008	SSFP	SCH6	МСР	МСР
		ø			
Size (mm) Footprint (mm²)	1.0×0.8 0.8	1.4×1.4 1.96	1.6×1.6 2.56	2.1×2.0 4.2	2.1× 4.2
h (mm)	0.6	0.6	0.56	0.9	0.8
PD (W)	0.15	0.15	0.8	0.15	1.5

Digital Still Cameras

Power Management SW Devices for DC/DC Converters

Application Example

Input S/W

MOSFETs

								RDS(o	n)(mΩ)				Ciss	Qa	
Type No.	Package	Polarity	VDSS (V)	ID (A)	VGS	=4.5V	VGS	s=4V	VGS	=2.5V	VGS	=1.8V	typ	typ	
			(-)	(,,)	typ	max	typ	max	typ	max	typ	max	(pF)	(nC)	
ECH8611	ECH8	Pch×2	12	5	30	40	-	-	45	65	66	95	1230	12	
FTD7003	TSSOP8	Pch×2	12	6	20	25	-	-	29	40	40	60	2100	28	
ECH8301	ECH8	Pch	20	8	-	-	18	24	26	37	-	-	1700	21	Q106 to Q109
ECH8603	ECH8	Pch×2	20	4	37	54	-	-	58	87	-	-	800	21	
2SJ613	PCP	Pch	20	6	-	-	53	69	72	98	-	-	680	7.8	

Power Management SW Devices for DC/DC Converters

Down Converter

MOSFET	s																					
						_	1-					RDS(c	on)(m	2)				Ciss		Qq		
Type No.	. Р	ackage	Polarity	/ `	VDSS (V/)	5	ID (A)			VGS=	4V			VGS	S=2.5	ν		typ		typ		
					(•)		(,,)		typ		r	max	t	ур		max		(pF)		(nC)		
MCH3309	N	ICPH3	- Pch		20		1.5		180		:	235	2	40	_	340		290		3.2	Q11	0/Q111
CPH3313		CPH3			20		1.6		180)	:	235	2	40		340		290		3.2		
Low Satu	ratior	n Volta	age Trar	sisto	ors																	
				1/0		Voro						h	FE				V	CE(s	at)(mV)			
Type No.	. P	ackage	Polarity	/ VC	V) BO	(V)	(4) (A)	(A)	VCE (V)	=	IC (mA)	mir	n r	nax	IC (A)	(1	IB mA)	typ	max		
CPH3235	N	ICPH3	PNP	1	5	12	3	3	5	2		500	200) !	560	1.5		30	110	165	011	0/0111
MCH3143	N	ICPH3	PNP	1	5	12	2.	5	5	2		100	200) !	560	1		50	90	135		0/0/111
Complex	Devi	ces (N	IOSFET	+ S	cho	ttky B	arrie	er Di	ode)													
						Ro	wer N	NOSF	ET						S	BD						
Type No	Packs					F	DS(o	n)(m	Ω)		Cia	Qg	Voou		١	/F	1	R		omnositiv	n	
Type No.		ige i on	(V)	(A)	VG	S=4V	VGS	=2.5\	VGS=	=1.8V	(pF	Typ	(V)	(A)	١F	max	٧R	max		Jinpositi	511	
				. ,	Тур	max	Тур	max	Тур	max		/ (nC)	. ,	. ,	(A)	(V)	(V)	(μ)				
MCH5801	MCP	H5 N	ch 20	1.5	160	210	200	280	280	390	100	0 4.5	15	0.5	0.3	0.40	6	200	MCH3	405+SB0)7/03C	Q112
SCH2816	SCF	16 N	ch 20	1.6	310	440	*120	160	-	-	//	2.9	15	0.5	0.5	0.44	6	90	SCH1	416+55	05015	
Complex	Devi	ces (T	ransisto	r + S	Scho	ottky E	Barri	er D	iode)													
						٦	ſR							SBD								
Type No.		ackado	Polarity			Voro								VF			IR		Cor	nnositior	,	
Type No.	. '	ackaye	rolanty		N	(V)	(A	5	(A)	VRRI (V)	M	(A)	١F	m	nax	VR	m	ax	001	npositioi	'	
				`	<u> </u>	()	``	·	. ,	. ,		. ,	(mA)) (V)	(V)	(μ)				
MCH6731	N	ICPH6	PNP	1	5	12	1.	0	2.0	15	\rightarrow	0.5	500	0	.45	6	9	90	12A02	MH+SBS	S018	
CPH5701		CPH5	PNP	1	5	15	3	-	5	15	_	1	500	0	.35	6	2	00	CPH3	106+SB5	5004	Q110+D1
CPH6702		CPH6	PNP	1	5	15	1.	5	3	30	+	0.5	300).4	10	2	00	CPH3	114+SB5	5006	
MCH6702		ICPH6	PNP	1	5	15	1.	5	3	30		0.7	300	0).4	10	2	00	MCH6	101+SBS	5006	
	-			_			_		_													

Up Converter & Other Converter MOSFETs

			\/= = =	1-		RDS(0	n)(mΩ)		Ciss	Qg	
Type No.	Package	Polarity	VDSS		VGS	8=4V	VGS	=2.5V	typ	typ	
			(•)	(14)	typ	max	typ	max	(pF)	(nC)	
CPH3413	CPH3	Nch	20	2.2	100	130	130	180	190	2.7	Q113/Q114
MCH3409	MCPH3	Nch	20	2.0	100	130	130	180	190	2.7	Q116/Q117
MCH6305	MCPH6	Pch	20	4	50	65	72	98	680	8.7	Q115
0 I D	· (140	OFFT	<u> </u>	D · D·	1. \						

Complex Device (MOSFET + Schottky Barrier Diode)

					Ro	wer N	/IOSF	ET							SBD					
	Bookogo		1-		R	DS(o	n)(m <u>c</u>	2)		0.	Qq				VF		- II	R	Composition	
туре но.	гаскауе	VDSS		VGS	S=4V	VGS	=2.5V	VGS=	=1.8V	CISS (nF)	Тур	VRRM		IF	typ	max	VR	max	Composition	
		(*)	(7)	Тур	max	Тур	max	Тур	max	(pr)	(nC)	(*)		(A)	(V)	(V)	(V)	(μ)		
CPH5802	CPH5	20	2	110	145	140	200	180	260	410	10	15	1	0.5	0.3	0.35	6	500	MCH3306+SBS004	Q115

Complex Devices (Transistor + Schottky Barrier Diode)

				Т	R				SI	3D				
Tupo No	Baakaga	Bolority	Vana		1.0	1.0.0		10	V	Γ	l	R	Composition	
туре но.	Гаскауе	Folanty	(V)	(V)	(A)	(A)	(VRRM (V)	(A)	IF (mA)	max (V)	VR (V)	max (μA)	Composition	
MCH5702	MCPH5	NPN	15	15	1.5	3	30	0.7	300	0.4	10	200	MCH6201+SBS006	0112.02
MCH6732	MCPH6	NPN	20	15	1	2	15	0.5	500	0.45	6	90	15C02MH+SBS018	Q113+D2
Schottky Ba	rrier Diod	les												

						VF1		VF2		IR	trr	
Type No.	Package	VRRM (V)	IO (A)	IFSM (A)	IF (A)	max (V)	lF (A)	max (V)	VR (V)	max (V)	max (nS)	
SBS004M	MCPH3	15	1	10	0.5	0.35	1	0.4	6	500	15	
SS10015M	MCPH3	15	1	10	0.3	0.32	0.5	0.35	6	90	10	
SS1003EJ	ECSP1608-4	30	1	5	0.5	0.39	1	0.45	15	360	10	01/02/04
SS1003M	MCPH6	30	1	10	0.5	0.39	1	0.45	15	360	10	
SBE803	CPH5	90	0.2	5	0.2	0.7	-	-	45	50	10	D3/D5

Audio/DVD/TV(LCD)/VCR/Car Audio

Small Signal Swiches Transistors

High Withstand Voltage Power MOSFET series

High Voltage Power MOSFET

100 10 (A) 0.1 100 200 300 500 1000 VDSS (V)

Power Schottky Barrier Diodes (for Large-Signal Ues)

Switching Regulator IC for Power Supplies

Ultra-low Saturation Voltage Transistors

								hF	ΞE			VCE(sa	at)(mV)	
Type No.	Package	Polarity	VCBO (V)	VCEO (V)	IC (A)	ICP (A)	VCE (V)	IC (mA)	min	max	IC (A)	IB (mA)	typ	max
EC3202C	ECSP1008-4	NPN	25	15	0.1	0.2	2	5	800	3200	0.01	1	14	30
EC3101C	ECSP1008-4	PNP	50	50	0.15	0.3	6	1	200	600	0.05	5	120	400
EC3201C	ECSP1008-4	NPN	55	50	0.15	0.3	6	1	800	3200	0.05	5	80	400
	o ·													

PicoMOS[™] Series

								RDS(on)(Ω)					Qa
Type No.	Package	Polarity	VDSS		VGS	=10V	VGS	S=4V	VGS	=2.5V	VGS	=1.5V	Ciss (nF)	typ
			(•)		typ	max	typ	max	typ	max	typ	max		(nC)
EC4301C	ECSP1008-4	Pch	30	0.1	-	-	8	10.4	11	15.4	27	54	7.5	1.43
EC4401C	ECSP1008-4	Nch	30	0.15	-	-	2.9	3.7	3.7	5.2	6.4	12.8	7.0	1.58
EC4304C	ECSP1008-4	Pch	30	0.25	-	-	1.5	1.9	2.0	2.8	4.0	8.0	40	0.8
EC4404C	ECSP1008-4	Nch	30	0.35	-	-	0.7	0.9	0.8	1.15	1.6	2.4	30	1.0
EC4302C	ECSP1008-4	Pch	50	0.07	-	-	18	23	20	28	30	60	7.4	1.4
EC4303C	ECSP1008-4	Pch	50	0.07	17	22	23	32	-	-	-	-	6.2	1.32
EC4402C	ECSP1008-4	Nch	50	0.1	-	-	6	7.8	7.1	9.9	10	20	6.6	1.57
EC4403C	ECSP1008-4	Nch	50	0.1	5.8	7.5	7.5	10.5		_	-		6.2	14

Schottky Barrier Diodes

					V	F1	V	F2	l l	R	ter	
Type No.	Package	VRRM (V)	IO (A)	IFSM (A)	IF (A)	max (V)	IF (A)	max (V)	VR (V)	max (V)	max (nS)	Composition
EC2D01B	ECSP1006-2	30	0.07	2	0.07	0.65	-	-	15	5	10	Power-Supplies LCD-Inverter etc
EC2D02B	ECSP1006-2	30	0.1	2	0.05	0.40	0.1	0.48	15	100	10	Power-Supplies LCD-Inverter etc
SB0203EJ	ECSP1608-4	30	0.2	2	0.2	0.55	-	-	15	5	10	Power-Supplies LCD-Inverter etc
SS0203EJ	ECSP1608-4	30	0.2	2	0.2	0.45	-	-	15	200	10	Power-Supplies LCD-Inverter etc
SB0503EJ	ECSP1608-4	30	0.5	5	0.5	0.55	-	-	15	15	10	Power-Supplies LCD-Inverter etc
SS0503EJ	ECSP1608-4	30	0.5	5	0.5	0.45	-	-	15	360	10	Power-Supplies LCD-Inverter etc
SB02-03Q	MCP	30	0.2	2	0.2	0.55	-	-	15	15	10	Power-Supplies LCD-Inverter etc
SB007W03Q	MCP	30	0.07	2	0.07	0.55	-	-	15	5	10	Power-Supplies LCD-Inverter etc
SB007-03Q	MCP	30	0.07	2	0.07	0.55	-	-	15	5	10	Power-Supplies LCD-Inverter etc
SB02W03C	CP	30	0.2	2	0.2	0.5	-	-	15	15	10	Power-Supplies LCD-Inverter etc
SB01-05Q	MCP	50	0.1	2	0.1	0.55	-	-	25	15	10	Power-Supplies LCD-Inverter etc
SB01-05CP	CP	50	0.1	2	0.1	0.55	-	-	25	15	10	Power-Supplies LCD-Inverter etc
SB05W05C	CP	50	0.5	5	0.5	0.55	-	-	25	50	10	Power-Supplies LCD-Inverter etc
-												

PicoTR Series

			.,				h	FE			VCE(s	at)(mV)	
Type No.	Package	Polarity	VCBO (V)	VCEO (V)	IC (mA)	VCE (V)	IC (mA)	min	max	IC (mA)	IB (mA)	typ	max
30A01SS	SSFP	PNP	30	30	300	2	10	200	500	100	5	110	220
30A02SS	SSFP	PNP	30	30	600	2	10	200	500	200	10	110	220
30A01S	SMCP	PNP	30	30	300	2	10	200	500	100	5	110	220
30A02S	SMCP	PNP	30	30	600	2	10	200	500	200	10	110	220
30A01M	MCP	PNP	30	30	300	2	10	200	500	100	5	110	220
30A02MH	MCPH3	PNP	30	30	700	2	10	200	500	200	10	110	220
30C01SS	SSFP	NPN	40	30	400	2	10	300	800	100	5	100	200
30C02SS	SSFP	NPN	40	30	600	2	50	300	800	200	10	110	220
30C01S	SMCP	NPN	40	30	400	2	10	300	800	100	5	100	200
30C02S	SMCP	NPN	40	30	600	2	50	300	800	200	10	85	190
30C01M	MCP	NPN	40	30	400	2	10	300	800	100	5	100	200
30C02MH	MCPH3	NPN	40	30	700	2	50	300	800	200	10	85	190

67

Year

The SBR series are breakthrough products that reduce both V_F loss when charging and reverse powe loss during high-temperate operation.

Discrete Devices for Switching Power Supplies and Chargers

Switching Power Supply Devices Application Example

Bipolar Transistors

		Vene	Voto		PC		hFE			VCE(sat)	_	tf
Type No.	Package	(V)	(V)	(A)	(Tc=25°C) (W)	IC (A)	VCE min	<u>=</u> =5V max	IC (A)	IB (A)	max (V)	max (μS)
2SC5956	TO-220			7	40	0.0			4	0.0		
2SC5959	TO-220ML				25	0.0			4	0.0		
2SC5957	TO-220	500	400	10	50	1.0	20	50	6	1.0	0.8	0.25
2SC5961	TO-3PB			10	80	1.2			0	1.2		
2SC5962	TO-3PB			14	90	2.0			10	2.0		

Bridge Diode

	VF	RM	lo	IFSM		VF	IB
Type No.	С	G			IF	max	max
	(V)	(V)	(A)	(A)	(A)	(V)	(μA)
DBD10	200	600	1.0	30	0.5	1.0	10

Schottky Barrier Diodes

		Veel	10	15014		. VF		IR I	Dthia	Tj
Type No.	Package	VRRM (V)	(A)	(A)	lF	max	VR	max	(°C/W)	max
		(-)	((/	(A)	(V)	(V)	(μΑ)	((°C)
SBT80-04Y	SMP	40	8	80	3	0.55	20	100	4	150
SBT150-04Y	SMP	40	15	100	6	0.55	20	200	3	150
SBT250-04Y	SMP	40	25	120	10	0.55	20	300	1.7	150
SBT80-04J	TO-220ML	40	8	80	3	0.55	20	100	5	150
SBT150-04J	TO-220ML	40	15	100	6	0.55	20	200	4	150
SBT250-04J	TO-220ML	40	25	120	10	0.55	20	300	3.5	150
SBT350-04J	TO-220ML	40	35	140	15	0.55	20	500	3	150
SBT250-04R	TO-3PML	40	25	120	10	0.55	20	300	2.4	150
SBT350-04R	TO-3PML	40	35	200	15	0.55	20	500	2	150
SBT250-04L	TO-3PB	40	25	120	10	0.55	20	300	1.6	150
SBT350-04L	TO-3PB	40	35	200	15	0.55	20	500	1.2	150
SBT80-06J	TO-220ML	60	8	80	3	0.58	30	100	5.0	150
SBT150-06J	TO-220ML	60	15	100	6	0.58	30	200	4.0	150
SBT250-06J	TO-220ML	60	25	120	10	0.58	30	300	3.5	150
SBT350-06J	TO-220ML	60	35	140	15	0.58	30	500	3.0	150
SBT250-06L	TO-3PB	60	25	120	10	0.58	30	300	1.6	150
SBT350-06L	TO-3PB	60	35	200	15	0.58	30	500	1.2	150
SBA50-09J	TO-220ML	90	5	60	2.5	0.75	45	100	5	125
SBA100-09J	TO-220ML	90	10	80	5	0.75	45	200	4	125
SBT80-10Y	SMP	100	8	60	3	0.80	50	100	4	150
SBT150-10Y	SMP	100	15	80	6	0.80	50	200	3	150
SBT80-10J	TO-220ML	100	8	60	3	0.80	50	100	5	150
SBR100-10J	TO-220ML	100	10	80	5	0.85	50	100	4	150
SBT150-10J	TO-220ML	100	15	80	6	0.80	50	200	4	150
SBT250-10J	TO-220ML	100	25	100	9.5	0.80	50	300	3.5	150
SBT250-10R	TO-3PML	100	25	100	9.5	0.80	50	300	2.4	150
SBT350-10R	TO-3PML	100	35	160	14	0.80	50	500	2	150
SBT250-10L	TO-3PB	100	25	100	9.5	0.80	50	300	1.6	150
SBT350-10L	TO-3PB	100	35	160	14	0.80	50	500	1.2	150
SBA120-18J	TO-220ML	180	12	20	6	0.85	90	300	3	125

Switching Power Supply Devices

MOSFETs Input Voltage AC 85 to 132V

input voltage	10 00 10 1021											
		VDOO	Veee		PD		F	RDS(on)(Ω	2)		Ciss	
Type No.	Package	VDSS	VGSS		Tc=25°C	VGS	=15V	VGS	=10V	ID	typ	Use
		(*)	(•)	(7)	(W)	typ	max	typ	max	(A)	(pF)	
2SK2406*	TP	450	±30	1	30	-	-	3.5	4.5	0.5	300	
2SK1690	SMP	450	±30	3	50	-	-	2.0	2.6	1.5	400	
2SK1691	SMP	450	±30	5	40	-	-	1.0	1.4	2.5	700]
2SK1443LS	TO-220FI(LS)	450	±30	1	20	-	-	3.5	4.5	0.5	250]
2SK1444LS	TO-220FI(LS)	450	±30	3	25	-	-	2.0	2.6	1.5	400	AC
2SK1445LS	TO-220FI(LS)	450	±30	5	30	-	-	1.0	1.4	2.5	700	Adapter
2SK1446LS	TO-220FI(LS)	450	±30	7	35	-	-	0.6	0.8	4.0	1200]
2SK1447LS	TO-220FI(LS)	450	±30	9	40	-	-	0.47	0.6	6.0	1600]
2SK2787LS*	TO-220FI(LS)	450	±30	8	40	-	-	0.55	0.75	5.0	1500]
2SK1451	TO-3PML	450	±30	8	50	-	-	0.6	0.8	4.0	1200	
2SK1452	TO-3PML	450	±30	10	60	-	-	0.47	0.6	6.0	1600	
2SK1453	TO-3PML	450	±30	16	70	-	-	0.24	0.3	8.0	3200]
2SK1448	TO-3PB	450	±30	8	100	-	-	0.6	0.8	4.0	1200	
2SK1449	TO-3PB	450	±30	12	120	-	-	0.47	0.6	6.0	1600	
2SK1450	TO-3PB	450	±30	20	150	-	-	0.24	0.3	10.0	3200	HAX, Monitor
2SK1454	TO-3PBL	450	±30	30	250	-	-	0.12	0.16	15.0	6400	
2SK2616	TP	500	±30	2	30	3.0	4.0	-	-	1.0	300]
2SK2617LS	TO-220FI(LS)	500	±30	4	25	1.2	1.6	-	-	2.0	550]
2SK2618LS	TO-220FI(LS)	500	±30	5	30	0.95	1.25	-	-	3.0	700	

Input Voltage AC 170 to 264V

		N/		1-	PD		F	RDS(on)(Ω	2)		Ciss	
Type No.	Package	VDSS (V)	VGSS	ID (A)	Tc=25°C	VGS	=15V	VGS	=10V	ID	typ	Use
		(•)	(•)	(7.9	(W)	typ	max	typ	max	(A)	(pF)	
2SK2623	TP	600	±30	1.5	30	4.2	5.5	-	-	0.8	300	
2SK3491	TP	600	±30	1	20	-	-	8.5	11	0.5	135	
2SK2919*	ZP	600	±30	2	35	-	-	3.2	4.3	1.0	400	
2SK1459LS	TO-220FI(LS)	600	±30	2.5	30	-	-	4.7	6.0	1.5	350	
2SK2043LS*	TO-220FI(LS)	600	±30	2	25	-	-	3.2	4.3	1.0	400]
2SK2624LS	TO-220FI(LS)	600	±30	3	25	2.0	2.6	-	-	2.0	550	Adapter
2SK2625LS	TO-220FI(LS)	600	±30	4	30	1.5	2.0	1.2	1.6	2.5	700	
2SK2628LS	TO-220FI(LS)	600	±30	6	35	0.9	1.1	-	-	2.0	1050]
2SK2632LS	TO-220FI(LS)	600	±30	2.5	25	3.6	4.8	-	-	1.3	550]
2SK2631	TP	800	±30	1	30	7.5	10	-	-	0.5	300	1
2SK2678LS	TO-220FI(LS)	800	±30	1.5	20	4.2	5.5	-	-	0.8	300]
2SK3852	TP	900	±30	0.4	30	-	-	50	70	0.15	70	
2SK1458LS	TO-220FI(LS)	900	±30	0.2	20	-	-	50	70	0.1	45]
2SK1464	TO-3PML	900	±30	8	80	-	-	1.2	1.6	4.0	1600	FAX,
2SK1466	TO-3PBL	900	±30	16	250	-	-	0.6	0.8	8.0	3200	Monitor
2SK2347	TO-3JML	1000	±20	20	160	-	-	0.6	0.8	10.0	3300	1
2SK3747	TO-3PML	1500	±20	2	50	-	-	10	13	1.0	400	

* : FRD built in

Discrete Devices for Switching Power Supplies and Chargers

Quasi-resonant type Block Diagram

Pin No.	Symbol	Function
1	FB	Input for feedback voltage and current sense
2	DELAY	Input for timing signal
3	DRAIN	Power MOSFET Drain
4	V _{IN}	Start-up voltage and drive voltage
5	SOURCE(GND)	Power MOSFET Source (ground)

Pin No.	Symbol	Name	Function
1	FB	Over current feedback pin	Input for feedback voltage and current sence
2	EDGE	EDGE detection pin	Input for timing signal
3	DRAIN	Drain pin	Power MOSFET drain
4	V _{DD}	Power pin	Input for start-up voltage and drive voltage
5	SOURCE(GND)	Source (ground) pin	Power MOSFET Source (ground)

Chargers

■ H- II Series best suited for switching power supplies of battery

Features

- 1. Achieves ultrafast switching operation by adopting SANO innovative LGCP* technology. (*: Low Gate - Charge Proces). In commerical production
- 2. Low Qg (gate charge) ... Reduced by 40%.

3. Switching time ... Reduced by 50%.

Demands for miniaturization, higher performance and higher reliability of equipment.

Lineup

-	Package	VDSS (V)	VGSS (V)	ID (A)	RDS(on)(Ω)				Ciss	Qa
Type No.					VGS=15V		VGS=10V		typ	typ
					typ	max	typ	max	(pF)	(nC)
2SK2406*	TP	450	±30	1.0	-	-	3.5	4.5	300	-
2SK1443LS	TO-220FI(LS)	450	±30	1.0	-	-	3.5	4.5	250	-
2SK1444LS	TO-220FI(LS)	450	±30	3.0	-	-	2.0	2.6	400	-
2SK1445LS	TO-220FI(LS)	450	±30	5.0	-	-	1.0	1.4	700	-
2SK1446LS	TO-220FI(LS)	450	±30	7.0	-	-	0.6	0.8	1200	-
2SK2787LS*	TO-220FI(LS)	450	±30	8.0	-	-	0.55	0.75	1500	-
2SK2616	TP	500	<u>+</u> 30	2.0	3.0	4.0	-	-	300	8
2SK2617LS	TO-220FI(LS)	500	±30	4.0	1.2	1.6	-	-	500	15
2SK2618LS	TO-220FI(LS)	600	<u>+</u> 30	5.0	0.95	1.25	-	-	700	20
2SK2623	TP	600	±30	1.5	4.2	5.5	-	-	300	8
2SK3491	TP	600	±30	1.0	-	-	8.5	11	135	6
2SK3850	TP	600	±30	0.7	-	-	14	18.5	96	4
2SK2678LS	TO-220FI(LS)	600	±30	1.5	4.2	5.5	-	-	300	8
2SK2624LS	TO-220FI(LS)	600	±30	3.0	2.0	2.6	-	-	550	15
2SK2625LS	TO-220FI(LS)	600	±30	4.0	1.5	2.0	-	-	700	20
2SK2628LS	TO-220FI(LS)	600	±30	6.0	0.9	1.1	-	-	1050	30
2SK2631	TP	800	±30	1.0	7.5	10	-	-	300	8
2SK2632LS	TO-220FI(LS	800	±30	2.5	3.6	4.8	-	-	550	15
2SK3852	TP	900	±30	0.4	-	-	50	70	70	-
2SK1458LS	TO-220FI(LS)	900	±30	0.2	-	-	50	70	45	-
2SK1459LS	TO-220FI(LS)	900	±30	30	-	-	4.7	6.0	350	-

* : FRD built in.

Delay -RCCt type ExPD

Type No.	V _{DSS} (V)	I _D (A)	R _{DS} (c	on) (Ω)	Input Voltage	Max* Power	
			typ	max	(VAC)	(W)	
TN4R01		4.5	1.25	1.6	100/120	90	
TN4R02	450	6	0.95	1.3		120	
TN4R03	450	3	1.95	2.5		60	
TN4R04		6.5	0.8	1.04		130	
TNEPO2	650	4.5	1.55	2	220	160	
INUNUS					WIDE	80	
TNEPOA		5.5	1.2	1.6	220	180	
1110104					WIDE	90	
TNEDOF		6.5	0.95	1.2	220	200	
CUHONID					WIDE	100	
	800	2.5	3.9	5.0	220	100	
				5.2	WIDE	50	
		3	3.1	3.9	220	120	
IINONU2					WIDE	60	
		4.5	1.75	2.3	220	160	
					WIDE	80	
		3.5	2.45	0.0	220	140	
IIIODU4				3.2	WIDE	70	

Quasi-resonant type ExPD

Type No.	V _{DSS} (V)	I _D (A)	R _{DS} (c	on) (Ω)	Input Voltage	Max* Power
			typ	max	(VAC)	(W)
TNGO02	650	4.5	1.6	2.1	220	160
TNOQ03					WIDE	80
TNCOOA		5.5	1.2	1.6	220	180
					WIDE	90

*: The avove-mentioned output electric power changes also with heat dissipation conditions and minimum input voltage ranges. Therefore, please consider these numerical values as a value of a standard.

chargers and AC adapters in various kinds of portable equipment.

Notes on Package Types, Naming and Dimensions The package names used in this documentation are designed to indicate a rough classification of the packages used, and do not necessarily indicate the formal name of each individual package. Additionally, these package dimensions are reference values. Refer to the delivery specifications document of a particular product for the dimensions and formal name of the package.