SANYO

SANYO Electric Co.,Ltd. Semiconductor Company tokyo office
Tokyo Bldg., 1-10, 1 Chom :81-(0)3-3837-6339, 6340, 6342, Facsimile: $81-(0) 3-3837-6377$
SANYO Electric Co.,Ltd. Semiconductor Company Homepage URL; http://www.semic.sanyo.co.jp/index_e.htm

Power Supply IC

From Analog to Digital
 SANYO's multifunction regulator IC series and TR series support various electronic equipment with advanced functions and high reliability to ensure that customers catch the latest next-generation products.
 In addition, "New Charge Pump" and "ISB ${ }^{\text {" }}$ technologies, based on new technology developed originally by SANYO, realize further miniaturization in product size.

CONTENTS

New Technology
1) Charge Pumps .. 1 to 14
2) ISB ${ }^{\circledR}$ (Integrated System in Board)............................ 15 to 18
Product Showcase
Products by Application ... 19 to 20
Product Lineup... 21 to 26
Switching Regulators .. 27 to 34
External Excitation Step-Down Switching Regulator - ... 35 to 36
Synchronous Rectification Switching Regulator 37 to 40
Switching Regulator + Linear Regulator (multi-regulator) 41
Power IC for Portable CD Players ... 42
Cellular Phone System Power Supplies 43
AC-DC Converter Controllers 44 to 45
Phase Control Voltage Inverter Control IC 46
System Regulators .. 47 to 52
Three-Terminal Regulators... 53
Power Supply ICs with Built-in Watchdog Timer Circuits - ${ }^{\text {- }}$ - 54
Dual Protection ICs ... 55
Rechargeable Battery Charge Control ICs..................... 56 to 58
Series Regulators ... 59.
Discrete Devices ... 63 to 72
Package Lineup ... 73

ISB is a registered trademark of SANYO Electric Co. Itd.

Recently electronic equipment has been subject to various demands.
These demands range from stable operation at low input voltages, more compac and highly efficient power systems and low power consumption for products such as cellular phones, to lower power voltages and higher efficiency for the new mill u mor con high frequ en radiation standards, SANYO
Cs from ICs from a system set base perspective with emphasis on the development of a wide range of general-purpose products.

SANYO has developed two major new technologies for specific fields. The first of these is called the New Charge Pump, and the second is called ISB ${ }^{\circledR}$
These module technologies make use of original SANYO substrate and mounting technologies to realize ultrathin, compact packages.
This technology makes it possible to provide the desired circuit blocks in a short period of time.
In addition, this technology also allows SANYO semiconductors to provide a wide range of services that match customer needs, such as TR groups characterized by the three terms, "too small to be seen", "easy-to-use" and "intelligent.

Please contact your local SANYO sales office if you cannot find an appropriate product or for any inquiries on specification changes and new product development.

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's physical and or material damage Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges or other parameters) listed in products specifications of any and all SANYO products described or contained herein.
- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device,
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However any and all SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all
semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is no guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property right or other rights of third parties.

SANYO Semiconductor Company carries out its designing, manufacturing

- All products described in this catalog contain developed products or products that are diverted from general types, In accordance with standard of quality management system ISO/TS16949 tor automotive industry, there is a case
where all demanded articles couldnÂft be supported, so please confirm to the salesman of our company at every order.
The Switching Regulator Principle 3
The Switched Capacitor Principle 3
The Charge Pump Principle 4
Development Specification Proposal for
Charge Pump Power Supply TEG
\& the Instruction Manual of X145 Evaluation

Development Specification Proposal for
Charge Pump Power Supply TEG
10
Technical Explanation
11 to 14

The old way: A Switching Regulator

Let's take a look at the methods that have been used to step up voltage so far. Think about the problem as the need to haul water uphill, to increase water pressure.
The first method is to catapult it up in one go. That's simple, and does get the water up there. But there is no way to prevent the considerable noise it generates and the headaches that causes about degradation of image quality, for example.

Tactics for Stepping Up Voltage
The old way:Switched Capacitor

In the next method, players carrying the bucket of water keep climbing higher and higher on the shoulders of others. That eliminates worries about noise, but imposes a huge burden on the player at the bottom What it takes to stand up under that strain is serious muscle: high voltage transistor. But using one entails high impedance, which literally impedes the flow of current.

Switchedr

New Charge Pump

And now we come to the newly developed charge pump circuit. One player draws water, then lifts it up one step and pours it into the next higher bucket.
The same lift and pour actions are performed by each of the players, so that there is no extra burden on any one of them That means there is no need for a high voltage transistor somewhere in the circuit, and no extra impedance, so that a large current can flow. And, of course, only a few drops of water are spilled - it's very efficient.
Actually, in conventional charge pump circuits, the higher you step up, the larger the surface area of the step and the more step up, the larger the surface area the mo effort needed to carry he bucket (hat is, a higher voltage transistor is needed). That made that approach problematic for use in, for example, CCD power suplies. We found a solution that gets around that problem, thanks to some circuitry wizardry, and the result is our new charge pump circuit.

Ω

3
With the older method, it was a strain to haul the water handed up from the step below. Water often spilled, so that efficiency sank as the water was hauled higher. Our new method is designed to keep such spillage to an utter minimum

Development Specification Proposal for
Charge Pump Power Supply TEG \&

the Instruction Manual of X145 Evaluation Board

1 Overview
The X145 Evaluation Board is a board for the charge pump TEG X145

2 Features

- Input voltage range 3.2 V to 5.5 V internally regulated to 3 V .
- Dual outputs positive and negative (Two charge pump channels).
- Charge pump boost VH channel 6 X input voltage $\mathrm{VH}=+15 \mathrm{~V}$ (5 mA average current).
- Charge pump boost inverting VL channel -3 X input voltage VL=-8V (10 mA average current)
- Built in regulator for DSP applications 2.5 V (45 mA average current).
- Internal / external oscillator is selectable

SELECT = VDD Internal oscillator
SELECT = VSS External oscillator. External oscillator is fed to CLK pin and the input range is from VDD to VSS

- Built-in soft start function thereby reducing of in rush current once the chip is activated through STBY pin. - Built-in short circuit protection of the charge pump output circuit.

3 Case Outline
 VQFN48

4 / Absolute Maximum Ratings at VSS=0V.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VBAT max		5.5	V
Operating temperature	Topr		-20 to 80	deg.
Storage temperature	Tstg		-40 to 125	deg.

5 Pecommended Operating Conditions at VSS=0V.

Parameter	Symbol		Conditions	Ratings
Supply voltage	VBAT		3.2 to 5.5	V

6 Eectrical Characteristics
(Unless otherwise specified., VBATT=3.2V,VSS=OV,CLK=1M-Z and Ta=25deg.)

Parameter	Symbol	Conditions	min	typ	max	Unit
Output voltage	VH			15		v
	VL			-8		V
	OUT1	Regulator only for input of charge pump		3		V
	OUT2			2.5		V
Maximum output current	IH_ave	Regulator output of 15 V			5	mA
	IL_ave	Regulator output of -8 V	-10			mA
	1O2_ave	Regulator output of 2.5 V			45	mA
Electric power efficiency	Peff	2 channels charge pump output (include regulator)				\%
External CLK frequency	fck-ext			1		MHz
Internal CLK frequency	fck-ext			1		MHz

2 Circuit Diagram of Evaluation Board

4 / Sequence of Rise and Fall /

* Approximate waveform of IDD (in rush current) as shown in item 1 to 6.
. Waveform was due to Charging of the filter capacitor of the fron regulator.

2. Waveform
3. Waveform was due to Charging of the pump-up capacitor by the plus side driver
. Waveform was
pump voltage.
4. Waveform was due to Stabilizing of the output of the negative charge
pump voltage.
5. Waveform was due to Charging of the filter capacitor of the output 6. Waveform was due to Clarging regular. The graph shows the timing (2-6) generatea by , Cl . MHz .

5 /IC Pin Assignment

6 /EV Board Parts List/

NO.	REF	VALUE	RATING
1	C 1	$2 \mu \mathrm{~F}$	16 V
2	C 2	$0.22 \mu \mathrm{~F}$	16 V
3	C 3	$0.22 \mu \mathrm{~F}$	16 V
4	C 4	$0.22 \mu \mathrm{~F}$	16 V
5	C 5	$1 \mu \mathrm{~F}$	6.3 V
6	C 6	$1 \mu \mathrm{~F}$	6.3 V
7	C 7	$1 \mu \mathrm{~F}$	6.3 V
8	C 8	$1 \mu \mathrm{~F}$	16 V
9	C 9	$1 \mu \mathrm{~F}$	25 V
10	C 10	$0.22 \mu \mathrm{~F}$	16 V
11	C 11	$0.22 \mu \mathrm{~F}$	16 V
12	C 12	$0.22 \mu \mathrm{~F}$	16 V
13	C 13	$0.22 \mu \mathrm{~F}$	16 V
14	C 14	$0.22 \mu \mathrm{~F}$	16 V
15	C 15	$0.1 \mu \mathrm{~F}$	50 V
16	C 16	$1 \mu \mathrm{~F}$	16 V
17	C 17	$0.1 \mu \mathrm{~F}$	50 V
18	R 1	510 hm	-
19	SW 1		-
20	SW 2		-

7 EV Board Pin Function

Pin Name	I/O	Function
VBAT		Battery voltage input 3.2 V to 5.5 V
vSs		GND pin
TP1		High voltage output (-3VDD)
TP2		Out2 regurator output 2.5V/45mA average current
TP3		Out1 regurator output 3V/130mA (only for internal IC)
TP4		VH High voltage output 15V / 5 mA average current
TP5		High voltage output (6VDD)
TP6		External CLOCK input pin SELECT=Lo : external CLOCK, SELECT=VDD : internal oscillator)
TP7		VL High voltage output -8V / 10mA average current
TP8	1	SLEEP signal input pin Lo : Current dissipation in the sleeping mode is 1uA or less $\mathrm{Hi}: 2.5 \mathrm{~V}$ and 3 V generates.
TP9	1	STBY signal input pin Lo : Standby mode $\mathrm{Hi}: 15 \mathrm{~V}$ and -8 V generates

8/EV Board Switching and Jumper Function

SW1	Switch for change-over in SLEEP mode
SW2	Switch for change-over in STBY mode
JP1	Jumper code for connection in between OUT1 to VDD (When battery voltage is input directly)
JP2	Jumper code selection clock for the operation of the IC. Lo : external CLOCK input, High : internal oscillator

9 EV Board Operating Instructions

Set-up

1. Connect a power supply to the VBAT pin and the VSS pin.
2. Change SW1(SLEEP) and SW2(STBY) into the OFF state.
3. When CLOCK is input from external IC, connect to the TP6 pin (it is terminated by 51 ohm)
4. When the oscillator built-in the IC is used, change JP2 into the ON state.

Start-up procedure

1. Apply electric power from the external power supply to the VBAT pin
2. Change SW1(SLEEP) into the ON state. Thus, OUT1(3V) and OUT2(2.5V) will rise,
3. Input external CLOCK.(*3)
4. Change SW2 (STBY) into the ON state. Thus, $\mathrm{VH}(15 \mathrm{~V})$ and $\mathrm{VL}(-8 \mathrm{~V})$ will rise.
5. When the short protection circuit works, the output of VH and VL were latched to OFF state,

Please re-start the circuit via STBY pin
(*3) This procedure is not required when the oscillator built-in the IC was used
Shut-down procedure

1. Change SW2(STBY) into the OFF state.
2. Turn off the external CLOCK. (*3)
3. Change SW1 (SLEEP) into the OFF state.
4. Turn off the external power supply.
(*3) This procedure is not required when the oscillator built-in the IC was used

Cellular phones with megapixel built-in cameras ——image quality to rival stand-alone digital cameras. Add our new charge pump circuit, and you have a match made in heaven. When we, acting on a suggestion from a customer, set about developing a practical application of our highly efficient charge pump circuit as a CCD power supply in cellular phones, our new product's ship had come in

SANYO's new charge pump circuits power more than cellular phones. Digital cameras, camcorders, PDAs - they are finding applications in a growing range of products. Now as we check out our charge pumps' characteristics and continue to improve them by listening to comments from customers in a wide range of fields, we will explore their further potential. We hope they'll help give birth to a new generation of mobile devices that soar beyond the limits of conventional thinking.

Higher efficiency than ever before and support for multi-stage step up. The industry's first "battery solution"

1

New high-efificiency n-stiage step up charge pump circuit developed based on unique SANYO analog device technologies

SANYO has now, for the first time in the industry, developed a charge pump power supply circuit that maintains an efficiency of over 90% even at $3 x$ and higher step-up ratios. This achieveme was made possible by adopting unique SANYO-developed analog device technologies.
The demand for camera cell phones, digital cameras, PDAs, and other products that use CCD camera modules is increasing rapidly, and as the functionality of this equipment increases, th俍 even lower power operation is growing stronger as well
This new charge pump circuit, which is compact, efficient, and can generate high voltages, wil be positioned as a strategic SANYO IP product, and SANYO is hopeful that this circuit will be adopted in a wide range of application areas.
Although the conventional charge pump circuit, which uses only capacitors and does not require inductors to increase the voltage, has superlative noise characteristics, its conversion efficiency results in large power losses making it problematic for use in low-power equipment such as portable digital equipment.
This new charge pump circuit that SANYO has now developed uses n capacitors for an n-stage step-up circuit, and uses charge transfer MOSFETs to charge those capacitors. This circuit provides the required supply voltages, both positive and negative, by repeating step up and harge transfer operations.
The step-up MOSFET gates are controlled by switching the arrangement of the capacitors ground, and VDD with an appropriate timing (using clock signals). This results in the stepped-up charge being transterred to the adjacent capacitor. This allows stepped-up supply voltages to be generated with a high conversion efficiency (90 to 95%).
This new circuit, which generates minimal noise and can provide multiple supply voltages, is optimal for use in cell phone CCD camera chipsets.

Since this circuit is noise free and is highly efficient in converting input power to the stepped-up voltages, circuit board shielding will not be required, even in application equipment that handles video. Furthermore, since this circuit will promote lower power, further miniaturization, and lower weight in application equipment, it increases design flexibility and can contribute to advances in
end product styling and functionality. While the battery, which is a critical component in portable electronic equipment, must operate in harsh environments, the adoption of this new charge pump technology makes it possible to supply the various supply voltages required by the different modules used in this equipment.
This new technology both promises and delivers solutions to the power supply needs in future portable electronic equipment, from megapixel class camera cell phones to camcorders and portable electronic equipment, from megapixel class camera cell phones to camcorders and
digital cameras, and can provide drive power for LCD and white LEDs as well. SANYO is also planning to expand the range of applications to include general-purpose and other products, and is aiming at introducing new products as they are developed. three for the individual stages and one smoothing capacitor, and four switching devices (MOSFETs). (Figure 2.)
The circuit iterates a sequence consisting of a charge cycle, in which charge is stored on capacitor, and a charge transfer cycle, in which the charge is transferred to the adjacent pacitor. In this way, the charge is stepped up from C 1 to C 2 , then from C 2 to C 3 , then from C3

Structure and Operation
Figure 3 shows the basic structure of a three-stage step-up type charge pump circuit. CLKB is the inverse of CLK, and CLK' and CLKB' are timing signals used to turn the charge transfer MOSFETs on or off at the point the clock signals change state. The LS circuits are level shifters M1 to M4 are the MOSFETs that transfer the charge, C1 to C3 are the charge pump capacitors 3 is transferred in order to C1, C2, C3, and C4, and is provided as the output voltage 4VDD 3 is transferred in order to C1, C2, C3, and C4, and is provided as the output voltage 4VDD
The potentials at the pumping nodes V1, V2, and V3 are increased by Vdd at each stage by switching the negative side potential of the capacitors $\mathrm{C} 1, \mathrm{C} 2$, and C 3 from 0 V to Vdd with the clock signal, and the output is thus stepped up to 4VDD. MOSFETs are used as the charge transferring elements (M1 to M4 in figure 3). Conventional charge pump circuits have the problem that the power efficiency is reduced since the internal impedance of the charge transfer
MOSFETs is high. This circuit structure has the feature that the required breakdown voltage in these charge transfer MOSFETs is reduced from 4VDD to 2VDD, and as a result, the impedance can be reduced easily. This allows the circuit to provide higher currents and allows the conversion efficiency to be improved, thus resolving the problems with conventional charge pump circuits.
In this circuit, the voltage amplitude at each pumping node is limited to about VDD and the charge transfer MOSFET drain-source voltage (VDS) has a maximum of 2VDD. This maximum voltage difference remains at 2VDD even if the number of step-up stages is increased. The gate potentials are controlled by the level shifter circuits (LS1 to LS4). (Figure 4). The (a) diagram in figure 4 shows the noninverting circuit. When the input clock logic level is at the high level (VDD), the output level will be the high level, that is, the potential A. When the input clock
logic level is at the low level (0 V), the output level will be the low level, that is, the potential B . The (b) diagram in figure 4 shows the inverting circuit.
The V1 to V3 potentials are stepped up an amount equal to the VDD supply voltage by the input clock (with levels of ground and VDD) frequency. (Figure 5)
Figure2/ Charge Transfer Example for Three Stage Step-up Operation
Fitgure 4 Level Shifter Circuit Block Diagrams

Current flow (step-up voltage, charge transfer)

(a)
(a)

Level shifter (L)
(b)

Level shifter (LS) inverting circuit

When the input is high,
the output will be at the A potential
When the input is high,
the output will be at the B potential

FFgures Input Clock and Voltages at Each Stage

Conventional charge pump circuits have the problem that reverse currents flow from the output side during charge transfer MOSFET switching, resulting in reduced efficiency. These reverse currents occur due to slight shifts in the liming win which the charge transfer MOSFETs switch. In this newly-developed circuit, the operating timing of the clock rise and fall are adjusted and the timing is controlled so that all are off when the charge transfer MOSFETs switch. By setting the timing so that the clocks CLK and CLKB that drive the negative side of the capacitors to to the timing with which the pumping nodes are switched on. This reliably prevents reverse currents from flowing and prevents power conversion loss.

0.5VDD Increment Step-up Function

In this newly-developed charge pump circuit, the capacitors used as the load at each stage have a split structure in which two capacitors with the same capacitance can be connected either in serial or in parale using three switches. This allows this circuit to provide supply
voltages with the fine voltage increment of 0.5 VDD , in particular 2VDD, $2.5 \mathrm{VDD}, 3 \mathrm{VDD}$, and voltages with the fip
3.5VDD. (Figure 6)

High Step-up Efficiency

Figure 7 presents the step-up efficiency of a $\pm 3 \times$ step-up charge pump circuit with externa capacitances of under $1 \mu \mathrm{~F}$ and a clock frequency of 1 MHz .

The results of measuring the output voltage vs. load current characteristics show that this circuit can generate output voltages equivalent to $\pm 3 \mathrm{VDD}$ with an input supply voltage of 3.3 V .
The results of measuring the step-up efficiency vs. load current characteristics show that this circuit achieves the high step-up power efficiency of over 80% when the load current is 40 m

Athough the efficiency drops somewhat to 72% when the load current is 100 mA , this could be improved by techniques such as reducing IC internal impedances by modifying the size of the transistors

SANYO is aware of the wide range of functions that are expected to be included in the ne generation of camera cell phones, functions such as autofocus systems, zoom lenses, and mechanical shutters, and is therefore working on developing products that provide even higher working to expand the range of applications for this technology to new fields.

Incremental Step-up Function
Equivalent Circuit comiersection

Parallel
connection

providing step-up
0.5VDD possible
$3 \times$ Step-up Circuit Output Characteristics
(VDD $=3.3 \mathrm{~V}$, operating frequency $=1 \mathrm{MHz}$. Using 1.0 HF external capacitors.)

$+3 \times$ Step-up Circuit

ISB^{\circledR} is a type of SiP (System in Package), and is a module technology that can realize high-density, super-thin products through the use of original SANYO substrate and mounting technologies. The ISB $^{\circledR}$ lineup includes three different processes (ISB-Solo ${ }^{\circledR}$, ISB-Duo $^{\circledR}$, and ISB-Quad ${ }^{\circledR}$) for various applications. These processes enable the creation of ISB ${ }^{\circledR}$ modules in a short period of time by assembling customer-specified circuit blocks as well as standard products using the optimum process.

ISB ${ }^{\circledR}$ process lineup

ISB-Solo ${ }^{\text {® }}$

- A thickness of only 0.45 mm (0.65 mm if resistors are included) offers superlative thermal dissipation and makes it possible to shorten the development TAT.
Optimum for creating SiP from small-scale blocks that include semi-power portions.
■Example assembly structure
■ Example application (cellular phone charger circuit block) Conventional mounting

ISB $^{\circledR}$

$4.45 \times 4.45 \times 0.65 \mathrm{~mm}$

ISB-Quad ${ }^{\circledR}$

$)^{\circ} 8{ }^{\circ}$ Employs an originally developed 0.24 mm thick high-density substrate (4-layer wiring)

- A package thickness of only 0.6 mmallows super-thin, high-density mounting.
- Optimum for creating SiP from high-frequency blocks up to 10 Gt , blocks that require superlative performance and EMC measures based on the component layout and wiring, and blocks that require high-density subsystem modules.
- Chip on Board type

■ Example assembly structure

[^0]
ISB ${ }^{\circledR}$ Applied Products (Standard Products)

Super-thin, Compact 1-channel and 2-channel DC/DC Converter Power Supply

In addition to assembling ISB ${ }^{\circledR}$ devices from circuit blocks requested by customers, SANYO is also enhancing its lineup of standard ISB ${ }^{\circledR}$ products. Some examples of these are introduced below.

©speries

Step-up DC/DC controller ICS, n-channel power MOSFET and Schottky barrier diode devices can be combined into modules simply by connecting an external voltage setting resistor, coil and capacitor
This makes it possible to easily configure a switching step-up power supply
\square Comparison of discrete mounting and ISB ${ }^{\text {® }}$

ISB $^{\circledR}$

Block diagram (SR10010)

$4.4 \times 3.4 \times 0.65 \mathrm{~mm}$
Mounting area 35% reduction

Type No.	$\begin{array}{c\|} \hline \begin{array}{c} \text { Number } \\ \text { of } \\ \text { chanels } \end{array} \end{array}$	Type	Oscillation frequency	Withstand voltage	Size	Situation
SR10010	1ch	Step-up type	180kHz	20 V	$3.4 \times 3.4 \times 0.65 \mathrm{~mm}$	ES samples available, MP support possible
SR10020			300kHz	20 V		ES samples available, MP support possible
SR10030			180kHz	30V		ES samples available, MP support possible
SR10110			100kHz	20 V		Mass production underway
SR10210			100kHz	20 V		Mass production underway
SR103XX		Step-down type	-	-		Under development
SR20010	2ch	$\begin{aligned} & \pm \text { power supply } \\ & \text { type } \end{aligned}$	180 kHz	20 V	$5.0 \times 5.0 \times 0.65 \mathrm{~mm}$	ES samples available, MP support possible

Two-Phase Full and Half Stepping Motor Driver

\square STK672-570
Unipolar constant-current chopper type (external excitation PWM) with built-in phase signal distributor
Comparison with SANYO hybrid IC

$7.5 \times 7.5 \times 0.65 \mathrm{~mm}$
■ Block diagram

- Specifications

Type No.	Supply voltage 1	Supply voltage 2	Maximum output current	Size	Situation
STK672-570	10 to 44 V	$5 \mathrm{~V} \pm 5 \%$	1.0 A	$7.5 \times 7.5 \times 0.65 \mathrm{~mm}$	ES samples available

Power Amplifier Module for 2.4 GHz Band Wireless LAN

Incorporating W-LAN functions is essential to support the rapidly evolving ubiquitous society.
ISB ${ }^{\circledR}$ makes it possible to combine a power amplifier, matching circuits and an antenna
(diversity) switch into a compact, super-thin PA module.

Products by Application

(1).......... New product
(D).......... Under development

Cellular Phone Use

Poner SupdyIClinep

SANYORegulators

External Excitation Step-Down Switching Regulators -.....-P35 to 36 System Regulators-...-P47 to 52
Synchronous Rectification Switching Regulators -............-P37 to 40 Three-Terminal Regulator ..-P53
Switching Regulator + Linear Regulator (multi-regulator) -................-P41 Watchdog Timer Circuits …......................................-P54
Power IC for Portable CD Players-..-P42
Cellular Phone System Power Supplies -...................................-P43
AC-DC Converter Controllers -..-P44 to 45
Rechargeable Battery Charge Control ICS.........P56 to 58 Series Regulators-...-P59 to 62
© New product * Under development

Switching Pagulators								
Type	Input voliage	Output voltage	Channels	Power stages	Package	Type No.	Notes	P
Step up	1.8 V to 14 V	Programmable externally	1ch	External (NPN or NMOS)	$\begin{aligned} & \text { MFP8 } \\ & \text { (225mil) } \end{aligned}$	LA5660M		27
Step down	1.8 V to 11V	Programmable externally externally	1ch	External (PNP or PMOS)	MFP8 (225mil)	LA5662M		28
	1.8 V to 11 V	Programmable externally	3ch	External (PNP)	TSSOP36 $\text { (} 275 \mathrm{mil} \text {) }$	LA5646T		
	1.8 V to 11V	Programmable externally	3ch	External (PNP)	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { TSSOP36 } \\ \text { (275mil) } \end{array} \\ \hline \end{array}$	LA5649T		30
	$1.8 \mathrm{~V}(1.2 \mathrm{~V})$ to 11 V	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Programmable } \\ \text { externally } \end{array} \\ \hline \end{array}$	4ch	External (PNP)	$\begin{aligned} & \text { SQFP48 } \\ & (7 \times 7) \\ & \hline \end{aligned}$	LA5627W		32
	5.5 V to 30 V	$3.3 \mathrm{~V} / 3 \mathrm{~A}$	1ch	Built in	SMP5	OLA5771MP		35
	7 V to 30 V	5V/3A	1ch	Built in	SMP5	OLA5772MP		35
	5.5 V to 30V	3.3V/3A	1ch	Built in	TO220-5H	OLA5751		36
	7 V to 30 V	5V / 3A	1ch	Built in	TO220-5H	OLA5752		36
	15 V to 30 V	12V/3A	1ch	Built in	TO220-5H	OLA5753		36
	5.5 V to 28 V	Variable	1ch	Built in	TO220-5H	OLA5754		36
	5.5 V to 30 V	$3.3 \mathrm{~V} / 3 \mathrm{~A}$	1ch	Built in	SMP5	O LA5751MP		36
	7 V to 30 V	$5 \mathrm{~V} / 3 \mathrm{~A}$	1ch	Built in	SMP5	OLA5752MP		36
	15 V to 30 V	12V/3A	1ch	Built in	SMP5	OLA5753MP		36
	5.5 V to 28 V	Variable	1ch	Built in	SMP5	OLA5754MP		36
Mixed step up /step down	1.8 V to 11 V	Programmable externally	$\begin{array}{\|l\|} \hline \text { 3hannels } \\ \text { (1step-und } \\ \text { step-cown a channels) } \end{array}$	External (NPN,PNP or NMOS,PMOS)	$\begin{array}{\|l\|l\|} \hline \text { TSSOP36 } \\ \text { (275mil) } \end{array}$	LA5679T		31
	1.8 V to 8 V	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Programmable } \\ \text { externally } \end{array} \\ \hline \end{array}$	channels (2 step-up and 2 step-down channels	External (NPN,PNP or NMOS,PMOS)	$\begin{array}{\|l} \hline \text { TSSOP36 } \\ \text { (275mil) } \end{array}$	LA5683T		33
	1.5 V to 12 V	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Programmable } \\ \text { externally } \end{array} \\ \hline \end{array}$		External (NPN,PNP or NMOS,PMOS)	$\begin{aligned} & \text { TQFP48J } \\ & (7 \times 7) \\ & \hline \end{aligned}$	OLA5680T		34
Step up/ down	4 V to 5.6 V	5V/250mA	1ch	Built in	$\begin{array}{\|l\|} \hline \text { MFP14S } \\ \text { (225mil) } \end{array}$	LA5664M		29
Step up lenear regurator	8.5 V to 18 V	Programmable externally externally	5ch	External (NPN or PMOS)	$\begin{array}{\|l\|} \hline \text { SSOP30 } \\ \text { (275mil) } \\ \hline \end{array}$	* LV5045V		41
	$\begin{aligned} & 1.5 \mathrm{~V} \text { to } 4.4 \mathrm{~V} \\ & 2 \mathrm{~V} \text { to } 8.0 \mathrm{~V} \end{aligned}$	2.5 V (step up $/$ down) 2.8V / 3.9 A (linear)	3ch	Built in	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { TSSOP24 } \\ \text { (225mil) } \end{array} \\ \hline \end{array}$	LV5051T		42
Inverter voltage	4.5 V to 23 V	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Programmable } \\ \text { externally } \\ \text { (current) } \end{array} \\ \hline \end{array}$	1ch	External	$\begin{array}{\|l\|} \hline \text { SSOP24 } \\ (275 \mathrm{mil}) \end{array}$	LA5663V		46

Poner SupdyIClinep

System Requlators

System Pagulators												
Type No.	Pegulator output voltage(V)/current(mA)							Package	Functions/Features			P
	1	2	3	4	5	vomise	$\begin{aligned} & \text { Total power } \\ & \text { dissipation } \\ & \text { (W) } \end{aligned}$		$\begin{aligned} & \text { On/off } \\ & \text { fimetion } \end{aligned}$	Reset	Notes	
LA5613	$\begin{aligned} & 5.1 \mathrm{~V} / \\ & 700 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { SW/ } \\ & 300 \mathrm{~mA} \end{aligned}$				14	1.7	SIP10F	\bigcirc		Built-in 11.3V/0.3A ripple filter and switching regulator control amplifier	50
LA5616	$\begin{aligned} & 5 \mathrm{~V} / \\ & 400 \mathrm{~mA} \end{aligned}$	7V/ 1000 mA				18	2.0	SIP10F	\bigcirc	\bigcirc	The 5 V regulator is a low dropout voltage circuit.	
LA5617	$\begin{aligned} & 7.5 \mathrm{~V} / \\ & 1500 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l\|} \hline-7.5 \mathrm{~V} / \\ -1500 \mathrm{~mA} \end{array}$				± 18	2.0	SIP10F	\bigcirc		Positive and negative voltage tracking regulato	
LA5618	$\begin{aligned} & 7.5 \mathrm{~V} / \\ & 1500 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -7.5 \mathrm{~V} / \\ & -1500 \mathrm{~mA} \end{aligned}$				± 18	2.3	SIP12H	\bigcirc		Positive and negative voltage tracking regulator	51
LA5620	$\begin{aligned} & 3.3 \mathrm{~V} / \\ & 40 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{~V} / \\ & 150 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} / \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} / \\ & 1000 \mathrm{~mA} \end{aligned}$		14	2.3	SIP12H		\bigcirc	Power on/off detection circuit	
LA5624H	$\begin{aligned} & 5 \mathrm{~V} / \\ & 50 \mathrm{~mA} \end{aligned}$	10V/ Within ASSO of extenal TR	$\begin{aligned} & 8 \mathrm{~V} / \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l\|} 8 \mathrm{~V} / \\ 30 \mathrm{~mA} \end{array}$	$\begin{aligned} & 8 \mathrm{~V} / \\ & 150 \mathrm{~mA} \end{aligned}$	24	2.01	$\begin{aligned} & \mathrm{HSOP28HC} \\ & (375 \mathrm{mil}) \end{aligned}$	\bigcirc	\bigcirc	A low saturation-voltage 10 V regulator can be implemented using an The on/off state of the IC can be controlled using the STBY pin and serial control data.	48
	8V/ 100 mA OP-C/ 10 mA	$\begin{array}{\|l} \begin{array}{l} 5 \mathrm{~V} / \\ 100 \mathrm{~mA} \end{array} \\ \hline \begin{array}{l} \mathrm{OP}-\mathrm{C} / \\ 10 \mathrm{~mA} \end{array} \end{array}$	5V/ 300 mA OP-C/ 10 mA	$\begin{array}{\|l} \begin{array}{l} \mathrm{SW} / \\ 100 \mathrm{~mA} \end{array} \\ \hline \begin{array}{l} \mathrm{OP-C/} \\ 10 \mathrm{~mA} \end{array} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{SW} / \\ & 100 \mathrm{~mA} \end{aligned}$							
LA5632		$\begin{aligned} & 3.3 \mathrm{~V} / \mathrm{l} \\ & 150 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{~V} / \mathrm{mA} \\ 1000 \mathrm{~mA} \end{array}$	5V/ 100 mA		14	2.3	SIP12H	\bigcirc	\bigcirc	Power on/off detection circuit	
LA5634	$\begin{aligned} & 5.1 \mathrm{~V} / \\ & 1700 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{SW} / \\ & 500 \mathrm{~mA} \end{aligned}$				14	1.7	SIP10F	\bigcirc		$V_{C C}{ }^{1-1}$ V/0.5 A ripple filter switching regulator control amplifier built in	
LA5635H	$5 \mathrm{~V} /$ $50 \mathrm{~mA}$	10V/ of external of externa	$\begin{aligned} & 8 \mathrm{~V} / \\ & 200 \mathrm{~mA} \end{aligned}$	8V/ $30 \mathrm{~mA}$	$\begin{aligned} & 8 \mathrm{~V} / \mathrm{I} \\ & 150 \mathrm{~mA} \end{aligned}$	24	2.01	HSOP28HC(375mil)	\bigcirc	\bigcirc	A low saturation-voltage 10 V regulator can be implemented using an external pnp transistor. The on/off state of the IC can be controlled using the STBY pin and serial control data.	
	8V/ 100 mA	5V/ 100 mA	$\begin{array}{\|l\|} \hline 5 \mathrm{~V} / \\ 300 \mathrm{~mA} \end{array}$	$\begin{aligned} & \text { SW/ } \\ & 100 \mathrm{~mA} \end{aligned}$	SW/ 500mA							
	$\begin{aligned} & \mathrm{OP}-\mathrm{C} / \\ & 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{OP}-\mathrm{C} / \\ & 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{OP}-\mathrm{C} / \\ & 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{OP}-\mathrm{C} / \\ & 10 \mathrm{~mA} \end{aligned}$								
LA5643	$\begin{aligned} & 3.5 \mathrm{~V} / \\ & 150 \mathrm{~mA} \end{aligned}$	5V/ 1000 mA	$\begin{aligned} & 5 \mathrm{~V} / \\ & 100 \mathrm{~mA} \end{aligned}$			14	2.0	SIP13H		\bigcirc		
LA5644	$\begin{array}{l\|} \hline 5.1 \mathrm{~V} / \\ 1700 \mathrm{~mA} \end{array}$	$\begin{aligned} & \mathrm{SW} / \\ & 500 \mathrm{~mA} \end{aligned}$				14	1.7	SIP10F	\bigcirc		$\mathrm{V}_{\mathrm{C}}{ }^{1-1} \mathrm{~V} / 0.5$ A ripple filter switching regulator control amplifier built in	
LA5678H	$\begin{aligned} & 3.0 \mathrm{~V} / \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~V} / \\ & 50 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{~V} / \\ & 150 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~V} / \\ & 50 \mathrm{~mA} \end{aligned}$		9	0.79	$\begin{aligned} & \mathrm{HSOP} 28 \mathrm{HC} \\ & (375 \mathrm{mil}) \end{aligned}$	\bigcirc		Built-in 1.5 channel forward/reverse moto driver The regulator output 1 can be switched from 3.0 to 3.4 V with a switch.	52

Dual Protection ICs					
Type No.	Absolutemeximm		Package	Functions Features	P
	$\begin{array}{\|l\|} \hline \text { movit } \\ \text { volige } \\ \text { M } \end{array}$				
LA5695M	18	0.4	MFP14 (225mil)	- Built-in supply voltage abnormality detection circuit - Driver output with built-in output delay circuits - Allows control from 8 input pins.	55

Poner SupdyIClinep

© New product						
Rechargeable Battery Charge Control ICs						
Eattery Type	Type No.			Package	FunctionsFeatures	P
Nicad, nickel-metal-hydride	LA5614M	9	0.25	MFP10S (225mil)	Charging voltage detection,switching between cycle and trickle charging, charge current is set with an external resistor	57
Lead	LA5615M	15	0.7	MFP16FS (300mil)	Switching between cycle and trickle charging, voltage and current detection	58
	LA5619M				Switching between cycle and trickle charging, voltage and current detection.	58
Lithium ion	LA5621M	11	0.32	MFP14 (225mil)	Current and voltage detection	
	LA5621V		0.25	$\begin{array}{\|l\|l\|} \hline \text { SSOP16 } \\ \text { (225mil) } \end{array}$	Current and voltage detection, modified package version of the LA5621M	
Lithium ion, nickel-metal-hydride	O LA5636M	14.5	0.36	$\begin{aligned} & \text { MFP10S } \\ & \text { (225mil) } \end{aligned}$	High-accuracy reference current ($92.5 \mu \mathrm{~A} \pm 2.7 \%$)	56
Battery charger	() LA5645M	14.5	0.3	MFP8 (225mil)	High-precision reference voltage ($1.5 \mathrm{~V} \pm 1 \%$), input offset voltage (2 mV max)	
	LA5645T		0.2	MSOP8 (150mil)	High-precision reference voltage ($1.5 \mathrm{~V} \pm 1 \%$), input offset voltage (2 mV max)	

* Under development					
AC-DCConverter Controllers					
Type No.	Package	Functions	vcc \widetilde{v}	Features	P
LA5648	DIP8 (300mil)	RCC/external excitation flyback AC-DC converter controller	30	UVLO, primary side P-by-P OCP, secondary side timer OCP	45
*LV5038M	MFP10S (225mil)	AC-DC converter auxiliary power supply controller	30	UVLO, primary side P-by-P OCP, built-in intermittent oscillation transmitter	44

From preceding page

Shunt Regulators

Type No.	$\begin{aligned} & \text { Cathode } \\ & \text { current } \\ & \left(\mathrm{m}^{\prime}\right) \end{aligned}$	Output voltage setting range (v)	$\begin{gathered} \text { Absolute maximum } \\ \text { ratings } \\ \hline \end{gathered}$		Package	Functions/Features	P
			$\begin{aligned} & \text { Input } \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { Total power } \\ & \text { dissipation } \end{aligned}$			
L5431	1 to100	Vref to 36	37	0.75	NP	High-precision variable shunt	

Switching Regulators
 LA5660M

Application

Single-channel general-purpose switching regulator IC

Functions/Features

Operates from 1.8 V .
Upconverter operation
On/off control function

Application

Single-channel general-purpose switching regulator IC

Functions/Features

- Operates from 1.8 V .
- Downconverter operation
- On/off control function

MFP8 (225mil)

Switching Regulators
 LA5664M

Application

Voltage step up/down switching regulator IC

Functions/Features

- Built-in 5.7 V switching regulator circuit
- Supports on/off control
- Soft start function

One 5 V low saturation-voltage regulator circuit ($\mathrm{IO}=250 \mathrm{~mA}$)

Switching Regulators LA5649T

Application
Three-channel switching regulator IC for digita cameras

Functions/Features

- Supports low-voltage operation, minimum: 1.8 V . - Includes independent standby circuits for each of the three channels
Reference voltage accuracy: $\pm 1 \%$

Switching Regulators
 LA5679T

Application

Three-channel switching regulator for digital cameras

Functions/Features

- Supports low-voltage operation, minimum: 1.8 V

OUT1 drives an external pnp transistor
OUT2 and OUT3 drive external npn transistors.
Includes independent standby circuits for each of the hree chamels.
Refe voltage accuracy: $\pm 1 \%$
Capable of driving MOS transistors

Switching Regulators

 LA5627W
Application

Four-channel switching regulator IC for digital cameras

Functions/Features
Supports low-voltage operation, minimum: 1.8 V
(When the internal subsidiary-supply is not used.)
Supports operation at voltages as low as 1.2 V when the internal subsidiary-supply is used
Includes independent standby circuits for each of the four channels.

Switching Regulators

LA5683T

Application

Four-channel switching regulator IC for digital cameras

Functions/Features

Supports low-voltage operation, minimum: 1.8

- OUT1 and OUT2 drive external pnp transistors
- OUT3 and OUT4 drive external npn transistors
- Includes independent standby circuits for each of the four channels.
Reference voltage accuracy: $\pm 1 \%$
- Capable of driving MOS transistors

The channel 2 dead time is fixed internally, the prese duty cycle is 100%.
(Channels 1, 3, and 4 are set externally.)

Switching Regulators

LA5680T

Application

Six-channel switching regulator control IC

Functions/Features

Supports low-voltage operation (minimum: 1.5 V).
Reference voltage precision: $\pm 1 \%$

- Independent six-channel standby circuit
- OUT1 and OUT2 drive external pnp transistors

OUT3 to OUT6 drive external npn transistors
Outputs can drive MOS transistors.
Channels 1 and 2 have an internally fixed dead time and a set duty of 100%.

Channels 3 to 6 have an internally fixed dead time and set duty of 85%.

External Excitation Step-Down Switching Regulators

LA5771MP/72MP

Application

External excitation step-down switching regulator ICs

Functions/Features

- High efficiency
- Only 4 external parts required
- Built-in reference oscillator (160 KHz)
- Current limiter circuit
- Thermal shutdown circuit
- Soft start circuit
- Wide input voltage range: up to 30 V
- IOmax: 3A
- Vout 3.3V (LA5771MP)

5V (LA5772MP)

External Excitation Step-Down Switching Regulators
 LA5751/52/53/54
 LA5751MP/52MP/53MP/54MP

Application

External excitation step-down switching regulator ICs

Functions/Features

- High efficiency
- Only 4 external parts required
- Built-in reference oscillator (60 KHz)

Built-in reference oscillator (60
LA5751/51/53MP,

- Built-in referenc

LA5754/54MP

- Current limiter circuit
- Thermal shutdown circuit
- Soft start circuit
- Wide input voltage range: up to 30 V
- IOmax: 3A
- Vout 3.3V (LA5751/51MP

5V (LA5752/52MP)
Variable (LA5754/54MP)

Synchronous Rectification Switching Regulator

LV5040V

Application

Two-channel general-purpose switching regulator IC

Functions/Features

- Two-circuit input step-down DC-DC converter controller - Input undervoltage lockout (UVLO) circuit, overcurrent detection function, and overtemperature detection
function, soft start/soft stop functions, startup delay circuit Output voltage monitoring functions
undervoltage protection with timer latch functions)
- Interleaved operation with 180° between phases 1 and 2

(Also supports multiphase operation with the two phases
operating in parallel.)
Supports synchronous operation between devices with differing types
(Supports master-slave operation when multiple devices are used.)

Synchronous Rectification Switching Regulator

LV5047V

Application

Synchronous rectification step-down DC-DC converter controller IC

Features

- Synchronous rectification step-down DC-DC converter controller
Input undervoltage lockout (UVLO) circuit, pulse-by-pulse overcurrent detection function, soft start/soft stop functions
- Function to prevent simultaneous conduction of both top and bottom MOSFETs
PGOOD output, built-in bootstrap circuit
- Construct synchronous rectification converter circuit with less external components

Synchronous Rectification Switching Regulator

LV5042V

Application

Two-channel step-down DC-DC converter controller IC

Features

- Two-channel step-down DC-DC converter controller - Input undervoltage lockout (UVLO) circuit, overcurren detection function, soft start/soft stop functions, and startup delay circuit
Output voltage monitoring functions
(power good function and undervoltage protection with (power good function
timer latch functions)
Interleaved operation with 180° between phases 1 and
- Supports synchronous operation with external devices
(Supports master-slave operation when multiple devices are used.)

Block
 Diagram

Synchronous Rectification Switching Regulator
 LV5043V
 Under developmer

Application
Two-channel step-down DC-DC converter controller IC

Features

- Two-channel step-down DC-DC converter controller - Input undervoltage lockout (UVLO) circuit, overcurren detection function, soft start/soft stop functions, and startup delay circuit
Output voltage monitoring functions
(power good function and undervoltage protection with timer latch functions)
SSOP30 (275mil)
- Interleaved operation with 180° between phases 1 and 2

Supports synchronous operation with external devices
(Supports master-slave operation when multiple devices
are used.

Switching Regulator + Linear Regulator (multi-regulator)

LV5045V

Under
development

Application

Set-top box power supply IC

Features

- 5 power supplies

Switching regulator (Shottky rectifier): 2 Reverse charge pump: 1
Linear regulator: 2

- Power good functions
- Under (no) voltage delay (UVD) circuit

Thermal protection circuit
Soft start function

Power IC for Portable CD Players

LV5051T

Features

- 2.5 V step-up/down DC-DC converter
- VG step-up circuit for power MOSFET driving
- $2.8 \mathrm{~V} / 3.9 \mathrm{~V}$ regulator control circuit
(with switching terminal)
- Undervoltage lockout (UVLO) circuit (PVCC1)

ACDET detection output terminal

- Microcontroller RESET output termina

Cellular Phone System Power Supplies

LV5105FN

AC-DC Converter Control ICs

LV5038M

Under
development

Application

Auxiliary power supply AC-DC converter controller

Functions/Features

- PWM operation based on external excitation and reset signal
Built-in intermittent operation switching function
- Fixed-duty intermittent operation switching function

Under-voltage-lockout function built-in
P-by-P primary side OCP detection circuit

AC-DC Converter Control ICs

LA5648

Application

RCC/external excitation AC-DC converter controller

Functions/Features

- RCC power supply controller
- Primary side overcurrent detection function (P-by-P) - Built-in UVLO circuit
- Secondary side overcurrent detection (with timer)
- Base winding voltage detection function

DIP8 (300mil)

Block
 Block Diagram

Phase Control Voltage Inverter Control IC

LA5663V

Application

Control of phase control type voltage inverters

Functions/Features

- Phase control technique allows the voltage transformer to be driven at a frequency that provides excellent efficiency.
- The phase can be adjusted with an external resistor
- Allows burst adjustment.
- Full complement of built-in protection circuits, including overvoltage protection and tube current detection and

protection
The precision reference voltage system. VREM precision: $\pm 1 \%$

System Regulators

LA5657H

Application

Car audio equipment

Functions/Features

- 10 V and 5 V regulators (using external pnp transistors) that provide a standby (on/off) function.
CCB controlled 8 V (two channels), $5 \mathrm{~V}, 3.25 \mathrm{~V}$, and 5 to 9.7 V (settable with an external resistor) outputs, four open-collector output channels and two channe
with VCC linked output
Tree buit-in reset systems (ACC, VDD [with delay
circuit], and battery)

Full complement of built-in protection circuits
For outputs other than the open-collector and reset outputs : overcurrent protection Thermal protection for all outputs except the reset output

Exxemal pnp T T must be 2 SBg21 or equivial

System Regulators LA5624H

Application

Car audio equipment

Functions/Features

- $5 \mathrm{~V} / 50 \mathrm{~mA}$ regulator
(always on, built-in reverse current protection)
- With standby (STBY: on/off control) function $10 \mathrm{~V} / 2 \mathrm{~A}$ regulator (with external 2SB921 pnp transistor) and $5 \mathrm{~V} / 300 \mathrm{~mA}$ regulator
Multiple regulators with shift register/latch based on/off control (four-output 8 V system, single-output 5 V system), four open-collector output systems, and two system), four open-collector output systems, and two
- Full complement of built-in protection circuits
- Overcurrent protection for all outputs except the pen-collector outputs
Thermal protection for all outputs except the $V_{D D} 5$ output

System Regulators

LA5601

Application

Microcontroller system monitoring power supply for CD players

Functions/Features

- Low saturation-voltage regulator (main power supply) $5.2 \mathrm{~V} / 250 \mathrm{~mA}$
Generates a power supply reset signal
Darlington driver: 120 mA
Auxiliary power supply: $3.4 \mathrm{~V} / 10 \mathrm{~mA}$
The main power supply and the driver circuit can be
turned on/off at the same time (active high).
The 5.2 V output features a low minimum I/O voltage
difference (0.3 V typical).
路
The auxiliary power supply circuit includes voltage
reverse current element diode, and thus is appropriate for
use in a backup power supply.

Block
 Diagrar

System Regulators

LA5613

Application

VCRs and other AV equipment

Functions/Features

- 5.0 V/0.7 A low saturation-voltage regulator
(with on/off function)
11.3V/0.3 A ripple filter

Switching regulator control amplifier
Built-in input ($\mathrm{V}_{\mathrm{CC}} 2$) overvoltage and thermal protection circuit

- Thermal protection circuit

Block

Diagra

System Regulators

LA5618

Application

Mini-component stereo systems and other audio equipment

Functions/Features

- Positive and negative voltage tracking regulator $\pm 7.5 \mathrm{~V} / \pm 1.5 \mathrm{~A}$ (on/off control function)
- System power supplies for microcontroller controlled mini systems
- Sequence control at power on can be implemented easily.
- This device is provided in an SIP-12H package, which allows a higher Pd to be acquired when a heat sink is used.

System Regulators

 LA5678H
Application

Audio equipment, MD players, and similar products

Functions/Features

- Regulator circuit ($\mathrm{IO}=100 \mathrm{~mA}$) that provides a pin fo switching between 3.0 and 3.4 V
- One 3.0 V regulator circuit ($1 \mathrm{O}=50 \mathrm{~mA}$)
- One 3.3 V regulator circuit ($1 \mathrm{O}=150 \mathrm{~mA}$)
- One 3.5 V regulator circuit ($1 \mathrm{O}=50 \mathrm{~mA}$)

The on/off state of each regulator circuit can be controlled independently
Built-in 1.5-channel forward/reverse motor driver

Three-Terminal Regulators L88M00T

Application

0.5 A low dropout voltage regulator

Functions/Features

- Low dropout voltage regulator
- Output voltages

L88M18T: 1.8 V , L88M25T: 2.5 V , L88M33T: 3.3 V L88M35T: 3.5 V, L88M05T: 5 V , L88M06T: 6 V , L88M09T: 9 V , L88M12T: 12 V

- Output current of 500 mA provided
- Low minimum I/O voltage difference (0.4 V typical) supports energy saving designs and the use of smaller transformers.
- Provided in the TP-3H miniature power package for easy end product miniaturization
- The allowable power dissipation can be increased by
surface mounting on a printed circuit board.
- Wide range of formed versions available for mounting flexibility

Power Supply ICs with Built-in Watchdog Timer Circuits LA5693D/M

Application

Microcontroller system monitoring in automotive, cooling/heating equipment, and office equipment applications
Functions/Features

- 5 V output voltage power supply controller
- Built-in watchdog timer
- Power supply reset signal generation function
- Two reset/hold outputs
- A low saturation-voltage regulator can be formed by using an external pnp transistor.
CK input does not contain a built-in
edge detection circuit for greater design flexibility
- Variable reset detection voltage
- Relatively long watchdog time (as compared with the LA5690/5691)

- Built-in $10 \mathrm{k} \Omega$ pull-up resistor in the $\overline{\operatorname{RES}}(1)$ output circuit

Dual Protection ICs

LA5695M

Application

Cooling/heating equipment and office equipment applications

Functions/Features

- Built-in supply voltage abnormality detection circuit - Driver output with built-in output delay circuit

Can control using 8 input pins.
MFP14 (225mil)

Rechargeable Battery Charge Control ICs LA5636M

Application
Lithium ion and nickel-metal-hydride battery chargers

Functions/Features

- Built-in circuit that prevents system malfunctions when
the input voltage (car battery voltage) falls.
- Provides a constant voltage output that is proportional to a PWM input signal.(The output voltage can be controlled by the system microcontroller.)
- High-accuracy reference current
(current control amplifier): $92.5 \mu \mathrm{~A} \pm 2.7 \%$
- The output voltage can be set with an external resistor
- Independent voltage and current amplifier loops
- This IC is a DC-DC converter secondary side control IC that uses the automotive power supply (car battery)
- Since this IC provides only the basic functions (constant voltage and constant current control)
required in a battery charger IC, it can easily be used together with other battery charger ICs.

Rechargeable Battery Charge Control ICs
 LA5614M

Application

Battery chargers for NiCd and nickel-metal-hydride batteries

Functions/Features
External battery transistor drive circuit

- Secondary battery charge voltage detection circuit

Charge on/off control function
On: cycle charge, Off: trickle charge
Cycle charge current setting circuit
For use with Nicad and ningel hydride
ares (s) Margeable
batteries (supports up to 3 cells). Microcontroller charge control (Charg
Supports switching between cycle charge and trickle charge
Charge current can be set with an external resistor

Rechargeable Battery Charge Control ICs

LA5615M/19M

Application
Lead-acid battery charger with battery voltage
detection function
Functions/Features

- Secondary battery charging circu

Charge current control circuit
(set with an external resistor: 125 mA typical

- Circuit for switching between cycle charge and trickle Charge voltage: Cycle charge voltage V V 1 mA) trickle charge voltage $\mathrm{V}_{\mathrm{O}} 2=4.9 \mathrm{~V}$
- Battery voltage detection circuit and battery on/off circuit
- Charge on/off circuit
- For secondary lead-acid (SLA) batteries (supports up to 2 cells). Charge characteristics appropriate for lead-acid
batteries (Charging conditions can be set according to the battery specifications.)
- The charge voltage is switched when switching between cycle charge and trickle charge
- LA5619M differs from the LA5615M in that the battery voltage detection circuit has been modified and hysteresis has been added.

Series Regulators
 L88R05

Application

Low saturation-voltage constant voltage power supply with reset function

Functions/Features

- Low saturation-voltage regulator: $5 \mathrm{~V} / 1 \mathrm{~A}$

Microcontroller reset signal generation function

- Full complement of built-in protection circuits
- Low minimum I/O voltage difference (0.5 V typical

Three reset threshold voltage rankings
provided: C, D, and E
$\mathrm{C}: \mathrm{V}_{\mathrm{RT}}=4.5 \mathrm{~V}, \mathrm{D}: \mathrm{V}_{\mathrm{RT}}=4.2 \mathrm{~V}, \mathrm{E}: \mathrm{V}_{\mathrm{RT}}=3.9 \mathrm{~V}$

- Delay time can be set using an external capacitor
- TO220-5H package adopted for easier mounting and thermal design

Series Regulators

L78LR05

Application

Constant voltage power supply with rese
unction
Functions/Features

- Regulator: $5 \mathrm{~V} / 150 \mathrm{~mA}$
- Microcontroller reset signal generation function
(Ranked according to the reset threshold voltages V_{R}) See page 52(785).
Battery backup function
- Wide range of $V_{R T}$ rankings to support a variety of microcontrollers
- Delay time can be set using an external capacitor.
- No reverse current prevention diode required for
battery backup
- Wide range of formed versions available for mounting flexibility
- Pd can be increased significantly by thermal design when used in surface mounting configuration.

Series Regulators

785

Application

Constant voltage power supply with reset
function

Functions/Features

- Modified package version of the L78LR05
- The table below lists the reset threshold voltages $V_{R T}$ ranking for the 785* series products.

V_{RT} ranking	B	C	D	E	F	G	H
$\mathrm{V}_{\mathrm{RT}}(\mathrm{V})$	4.8	4.5	4.2	3.9	3.6	3.3	3.0

Ultraminiature thin form factor package for easier
high-density mounting

Series Regulators
 L78MR00

Application

Constant voltage power supply with rese
function

Functions/Features

- Reset (Power supply voltage monitoring

Generates a reset signal at power on and at temporary voltage drops.)
Output voltage
L78MR05:5V (Reset output: with a built-in pull -up resistor)
L78MR06: 6V (Reset output: open collector)
L78MR08: 8V (Reset output: open collector)
L78MR09: 9V (Reset output: open collector)
L78MR12:12V (Reset output: open collector)

*: T:The ITzumos incorporates abulitin

Discrete Devices for Switching Power Supply and Charger
SANYO DiScrete Devices
Overview
SANYO discrete devices are environmentally friendly and can be employed in microprocesses and new processes to
make equipment in a wide variety of fields smaller, lower form factor, more efficient and more reliable.

The invisible, user-friendly and smart ECoP
"light, fast, energy-saving and user-friendly." series is based on the concept
Invisible Devices
- Can be used in high-density mounting
- Reduce saturation voltage
- Increase speed
Userffriendly Devices
- Increase thermal conductance
- Increase power density
Increase efficiency
Smart Devices
- Enable incorporation into systems
- Enable modularization
- Enable more advanced functionality

Multi-function Devices
-ExPDs - Si MMICs - PicoLogic ${ }^{T \mathrm{mM}}$

Power Devices

- Horizontal deflection output transistors
- High withstand voltage switching transistors
- High withstand voltage Darlington transist
- High withstand voltage diodes

General-purpose Devices

- High-speed switching transistors
- Switching transistors
- Resistor built-in transistors
- Muting transistors
- Rectifier diodes

High Frequency Devices

- Ultrahigh frequency transistors

GaAs devices

- JFETs
- PIN diodes
- PicoGET

H7H 日 ?

Medium-Power Devices

- Ultralow saturation transistors
- Ultralow on-resistance power MOSFETs

Low VF Schottky barrier diodes

- PicomOS
- PicoTR

Digital Still Cameras

Power Management SW Devices for DC/DC Converters

- Application Example

- Input S/W
mOSFETs

Type No.	Package	Polarity	$\underset{\text { VDSs }}{\text { (V) }}$	$\left.\mathrm{in}_{(\mathrm{A}}^{\mathrm{D}}\right)$	RDS(on)(m)								$\begin{aligned} & \text { Ciss } \\ & \text { Cyp } \\ & \text { (pF) } \end{aligned}$	$\begin{aligned} & \mathrm{ag} \\ & \text { typ } \\ & \text { (nc) } \end{aligned}$	
					VGS=4.5V		VGS=4V		VGS $=2.5 \mathrm{~V}$		VGS $=1.8 \mathrm{~V}$				
					typ	max	typ	max	typ	max	typ	max			
ECH8611	ECH8	Pchx2	12	5	30	40	-	-	45	65	66	95	1230	12	
FTD7003	TSSOP8	Pchx2	12	6	20	25	.	-	29	40	40	60	2100	28	
ECH8301	ECH8	Pch	20	8	.	.	18	24	26	37	.	-	1700	21	Q106 to Q109
ECH8603	ECH8	Pchx2	20	4	37	54	-	-	58	87	-	-	800	21	
2SJ613	PCP	Pch	20	6			53	69	72	98	-	-	680	7.8	

Power Management SW Devices for DC/DC Converters

Down Converter

MOSFETs

Type No.	Packa	Pola	$\begin{gathered} \text { VDSs } \\ \text { (V) } \end{gathered}$	$\begin{aligned} & \mathrm{I} \\ & (\mathrm{~A}) \end{aligned}$	RDS(on)(m)				$\begin{aligned} & \text { Ciss } \\ & \text { (yp) } \\ & \text { (pF) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{Qg} \\ & \text { (typ } \\ & \text { (nC) } \end{aligned}$	
					$\mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}$		$\mathrm{VGS}=2.5 \mathrm{~V}$				
МСН3309	MCPH3		20	1.5	180	235	240	340	290	3.2	
CPH3313	CPH3		20	1.6	180	235	240	340	290		

MCH3143 MCPH3	PNP	15	12	2.5
Complex Devices (MOSFET + Schottky Barrier Diode)				

Type No.	Package	Polarity	Rower MOSFET										SBD						Composition	
			$\begin{array}{\|c} \text { Voss } \\ (\mathrm{N} \end{array}$	$\begin{aligned} & \text { ID } \\ & (\mathrm{A}) \end{aligned}$	RDS(on)(ms)						$\begin{aligned} & \text { Ciss } \\ & (\mathrm{pFF}) \end{aligned}$	$\begin{aligned} & \mathrm{ag} \\ & \substack{\mathrm{ag} \\ \text { Typ } \\ \text { (ncc) }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VRBM } \\ & (V) \end{aligned}$	$\begin{aligned} & \text { 10 } \\ & (\mathrm{A}) \end{aligned}$	$\begin{aligned} & \text { (A) } \\ & \hline \end{aligned}$	$\begin{gathered} \max \\ \text { (V) } \end{gathered}$	$\begin{array}{\|c} \hline \text { IR } \\ \hline \mathrm{V}_{\mathrm{R}} \\ \hline \end{array}$			
						=4V	VGS	-2.5v	VGS	=1.8V										
MCH5801	MCPH5	Nch	20	1.5	160	210	200	280	280	390	100	4.5	15	0.5	0.3	0.4	6	200	MCH3405+SB07/0	
SCH2816	SCH6	Nch	20	1.6	310	440	* 120	160	-	-	77	2.9	15	0.5	0.5	0.44	6	90	SCH1416+SS05015	

Complex Devices (Transistor + Schottky Barrier Diode)

\square Up Converter \& Other Converter
MOSFETs

Type No.	Package	Polarity	$\begin{aligned} & \text { Voss } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { (D) } \\ & (\mathrm{A}) \end{aligned}$	$\mathrm{RDS}(\mathrm{On})(\mathrm{m}$)				$\begin{aligned} & \begin{array}{l} \text { Ciss } \\ \text { typ } \\ \text { (pF) } \end{array} \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} \mathrm{ag} \\ \text { typ } \\ \text { (nC) } \end{array}\right) \end{aligned}$	
					$\mathrm{VGS}=4 \mathrm{~V}$		VGS=2.5V				
					typ	max	typ	ma			
CPH3413	СРН3	Nch	20	2.2	100	130	130	180	190	2.7	Q113/Q114
MCH3409	MCPH3	Nch	20	2.0	100	130	130	180	190	2.7	Q116/Q117
MCH6305	MCPH6	Pch	20	4	50	65	72	98	680	8.7	Q115

Complex Device (MOSFET + Schottky Barrier Diode)
Complex Devices (Transistor + Schottky Barrier Diode)

MCH6732 MCP
Schottky Barrier Diodes

Type No.	Package	$\underset{(V)}{\substack{\text { VRRM }}}$	$\begin{aligned} & 10 \\ & (A) \end{aligned}$	$\underset{(A)}{\text { IFSM }}$	VF1		V F2		1 R		$\underset{\substack{\operatorname{trrx} \\ \text { max } \\(n S)}}{ }$	
					$\begin{aligned} & \text { IF } \\ & (\mathrm{A}) \end{aligned}$	$\underset{(V)}{\max }$	$\begin{aligned} & \text { IF } \\ & (\mathrm{A}) \end{aligned}$	$\underset{(V)}{\max }$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \\ & (\mathrm{~V}) \end{aligned}$	$\max _{\text {(V) }}$		
SBS004M	МСРН3	15	1	10	0.5	0.35	1	0.4	6	500	15	
SS10015M	МСРНЗ	15	1	10	0.3	0.32	0.5	0.35	6	90	10	D1/D2014
SS1003EJ	ECSP1608-4	30	1	5	0.5	0.39	1	0.45	15	360	10	
SS1003M	MCPH6	30	1	10	0.5	0.39	1	0.45	15	360	10	

Small Signal Swiches Transistors

Ultra-low Saturation Voltage Transistors

Type No.	Package	Polarity	$\begin{gathered} \text { VCBO } \\ \text { (V) } \end{gathered}$	$\begin{gathered} \text { vCEO } \\ (\mathrm{V}) \end{gathered}$	$\begin{aligned} & \text { IC } \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & \text { ICP } \\ & \text { (A) } \end{aligned}$	hFE				$\mathrm{V}_{\text {CE }}($ sat)(mV)			
							$\begin{aligned} & v_{C E E} \\ & (V) \end{aligned}$	$\begin{gathered} \text { IC } \\ (\mathrm{mA}) \end{gathered}$	min	max	$\begin{aligned} & \text { IC } \\ & \text { (A) } \end{aligned}$	$\underset{(\text { mA }}{\text { (1B) }}$	typ	max
EC3202C	ECSP1008-4	NPN	25	15	0.1	0.2	2	5	800	3200	0.01	1	14	30
EC3101C	ECSP1008-4	PNP	50	50	0.15	0.3	6	1	200	600	0.05	5	120	400
EC3201C	ECSP1008-4	NPN	55	50	0.15	0.3	6	1	800	3200	0.05	5	80	400
PicoMOS ${ }^{\text {TM }}$ Series														
Type No.	Package	Polarity	$\begin{gathered} \text { VDSS } \\ (V) \end{gathered}$	$\begin{aligned} & \text { ID } \\ & \text { (A) } \end{aligned}$	RDS(on)(Ω)								$\begin{aligned} & \text { Ciss } \\ & (\mathrm{PF}) \end{aligned}$	$\begin{aligned} & \mathrm{Qg} \\ & \text { typ } \\ & \text { (nC) } \end{aligned}$
					$\mathrm{VGS}=10 \mathrm{~V}$		VGS=4V		$\mathrm{VGS}=2.5 \mathrm{~V}$		$\mathrm{VGS}=1.5 \mathrm{~V}$			
					typ	max	typ	max	typ	max	typ	max		
EC4301C	ECSP1008-4	Pch	30	0.1	-	-	8	10.4	11	15.4	27	54	7.5	1.43
EC4401C	ECSP1008-4	Nch	30	0.15	.	.	2.9	3.7	3.7	5.2	6.4	12.8	7.0	1.58
EC4304C	ECSP1008-4	Pch	30	0.25	.	-	1.5	1.9	2.0	2.8	4.0	8.0	40	0.8
EC4404C	ECSP1008-4	Nch	30	0.35	.	.	0.7	0.9	0.8	1.15	1.6	2.4	30	1.0
EC4302C	ECSP1008-4	Pch	50	0.07	.	-	18	23	20	28	30	60	7.4	1.4
EC4303C	ECSP 1008-4	Pch	50	0.07	17	22	${ }^{23}$	32	-		-	-	6.2	1.32
EC4402C	ECSP1008-4	Nch	50	0.1	.	.	6	7.8	7.1	9.9	10	20	6.6	1.57
EC4403C	ECSP 1008-4	Nch	50	0.1	5.8	7.5	7.5	10.5	6.2	1.4

Type No.	Package	$\underset{(V)}{\text { VRRM }}$	$\begin{aligned} & 10 \\ & (A) \end{aligned}$	$\underset{(A)}{\text { IFSM }}$	VF1		VF2		IR		$\underset{\substack{\operatorname{trax} \\(\mathrm{max}}}{\substack{ \\(1)}}$	Composition
					$\begin{aligned} & 1 /{ }_{(A)} \end{aligned}$	$\begin{gathered} \max \\ (V) \end{gathered}$	$\begin{aligned} & \text { IF } \\ & (\mathrm{A}) \end{aligned}$	$\begin{gathered} \max \\ \text { (V) } \end{gathered}$	$\begin{aligned} & V_{R} \\ & (V) \end{aligned}$	$\max _{(V)}$		
EC2D01B	ECSP1006-2	30	0.07	2	0.07	0.65			15	5	10	Power-Supplies LCD-Inverte
EC2D02B	ECSP1006-2	30	0.1	2	0.05	0.40	0.1	0.48	15	100	10	Power-Supplies LCD-Inverter etc
SB0203EJ	ECSP1608-4	30	0.2	2	0.2	0.55			15	5	10	Power-Supplies LCD-Inverter etc
S0203EJ	ECSP1608-4	30	0.2	2	0.2	0.45			15	200	10	Power-Supplies LCD-Inverter etc
80503EJ	ECSP1608	30	0.5	5	0.5	0.55			15	15	10	Power-Supplies LCD-Inverter etc
03EJ	ECSP1608-4	30	0.5	5	0.5	0.45			15	360	10	Power-Supplies LCD-Inverter etc
SB02-03Q	MCP	30	0.2	2	0.2	0.55			15	15	10	Power-Supplies LCD-Inverter etc
SB007W03Q	MCP	30	0.07	2	0.07	0.55	-	-	15	5	10	Power-Supplies LCD-Inverter etc
SB007-03Q	MCP	30	0.07	2	0.07	0.55		-	15	5	10	Power-Supplies LCD-Inverter etc
SB02W03C	CP	30	0.2	2	0.2	0.5	.	-	15	15	10	Power-Supplies LCD-Inverter etc
SB01-05Q	MCP	50	0.1	2	0.1	0.55	-	-	25	15	10	Power-Supplies LCD-Inverter etc
SB01-05CP	CP	50	0.1	2	0.1	0.55	-	-	25	15	10	Power-Supplies LCD-Inverter etc
SB05W05C	CP	50	0.5	5	0.5	0.55	-	.	25	50	10	Power-Supplies LCD-Inverter etc

PicoTR Series

Type No.	Package	Polarity	$\underset{(V)}{\mathrm{v}_{\text {CBO }}}$	$\underset{\substack{\mathrm{v}_{\text {CEO }} \\(V)}}{ }$	$\begin{gathered} 1 \mathrm{c} \\ (\mathrm{~mA}) \end{gathered}$	hFE				VCE(sat)(mV)			
						$\begin{aligned} & v_{C E E} \\ & (V) \end{aligned}$	$\underset{(\mathrm{mA})}{\substack{\mathrm{c} \\()^{\prime}}}$	min	max	$\underset{(\mathrm{mA})}{\substack{\mathrm{c} \\(2)}}$	$\begin{gathered} (\mathrm{B} \\ (\mathrm{mA}) \end{gathered}$	typ	max
30A01SS	SSFP	PNP	30	30	300	2	10	200	500	100	5	110	220
30A02SS	SSFP	PNP	30	30	600	2	10	200	500	200	10	110	220
30A01S	SMCP	PNP	30	30	300	2	10	200	500	100	5	110	220
$30 A 025$	SMCP	PNP	30	30	600	2	10	200	500	200	10	110	220
30A01M	MCP	PNP	30	30	300	2	10	200	500	100	5	110	220
З0А022M	МСРНЗ	PNP	30	30	700	2	10	200	500	200	10	110	220
$30 \mathrm{CO1ss}$	SSFP	NPN	40	30	400	2	10	300	800	100	5	100	200
$30 \mathrm{Co2ss}$	SSFP	NPN	40	30	600	2	50	300	800	200	10	110	220
$30 \mathrm{CO15}$	SMCP	NPN	40	30	400	2	10	300	800	100	5	100	200
$30 \mathrm{Co2s}$	SMCP	NPN	40	30	600	2	50	300	800	200	10	85	190
30С019	MCP	NPN	40	30	400	2	10	300	800	100	5	100	200
з0С02MH	МСРНЗ	NPN	40	30	700	2	50	300	800	200	10	85	190

High Withstand Voltage Power MOSFET series
High Voltage Power MOSFET

Power Schottky Barrier Diodes (for Large-Signal Ues)

Switching Regulator IC for Power Supplies

Year

Discrete Devices for Switching Power Supplies and Chargers

Switching Power Supply Devices
 \square Application Example

Schottky Barrier Diodes

Type No.	Package	$\begin{gathered} \text { VRRM } \\ \text { (V) } \end{gathered}$	${ }_{\text {I }}^{\text {(})}$	$\underset{(A)}{\text { IFSM }}$	$\begin{aligned} & \mathrm{IF} \\ & (\mathrm{~A}) \end{aligned}$	$\begin{gathered} v_{F} \\ \text { max } \\ (v) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \\ & \text { (V) } \end{aligned}$	$\underset{(\mu \mathrm{A})}{\substack{\max \\(\max }}$	$\begin{aligned} & \text { Renh-c. } \\ & \left({ }^{\circ} \mathrm{C}\right. \text {) } \end{aligned}$	
SBT80-04Y	SMP	40	8	80	3	0.55	20	100	4	150
SBT150-04Y	SMP	40	15	100	6	0.55	20	200	3	150
SBT250-04Y	SMP	40	25	120	10	0.55	20	300	1.7	150
SBT80-04J	TO-220ML	40	8	80	3	0.55	20	100	5	150
SBT150-04J	TO-220ML	40	15	100	6	0.55	20	200	4	150
SBT250-04J	TO-220ML	40	25	120	10	0.55	20	300	3.5	150
SBT350-04J	TO-220ML	40	35	140	15	0.55	20	500	3	150
SBT250-04R	TO-3PML	40	25	120	10	0.55	20	300	2.4	150
SBT350-04R	TO-3PML	40	35	200	15	0.55	20	500	2	150
SBT250-04L	TO-3PB	40	25	120	10	0.55	20	300	1.6	150
SBT350-04L	TO-3PB	40	35	200	15	0.55	20	500	1.2	150
SBT80-06J	TO-220ML	60	8	80	3	0.58	30	100	5.0	150
SBT150-06J	TO-220ML	60	15	100	6	0.58	30	200	4.0	150
SBT250-06J	TO-220ML	60	25	120	10	0.58	30	300	3.5	150
SBT350-06J	TO-220ML	60	35	140	15	0.58	30	500	3.0	150
SBT250-06L	TO-3PB	60	25	120	10	0.58	30	300	1.6	150
SBT350-06L	TO-3PB	60	35	200	15	0.58	30	500	1.2	150
SBA50-09J	TO-220ML	90	5	60	2.5	0.75	45	100	5	125
SBA100-09J	TO-220ML	90	10	80	5	0.75	45	200	4	125
SBT80-10Y	SMP	100	8	60	3	0.80	50	100	4	150
SBT150-10Y	SMP	100	15	80	6	0.80	50	200	3	150
SBT80-10J	TO-220ML	100		60	3	0.80	50	100	5	150
SBR100-10J	TO-220ML	100	10	80	5	0.85	50	100	4	150
SBT150-10J	TO-220ML	100	15	80	6	0.80	50	200	4	150
SBT250-10J	TO-220ML	100	25	100	9.5	0.80	50	300	3.5	150
SBT250-10R	TO-3PML	100	25	100	9.5	0.80	50	300	2.4	150
SBT350-10R	TO-3PML	100	35	160	14	0.80	50	500		150
SBT250-10L	TO-3PB	100	25	100	9.5	0.80	50	300	1.6	150
SBT350-10L	TO-3PB	100	35	160	14	0.80	50	500	1.2	150

Switching Power Supply Devices

MOSFETS

Type No.	Package	$\begin{gathered} \mathrm{v}_{\mathrm{DSS}} \\ (\mathrm{~V}) \end{gathered}$	$\begin{gathered} v_{\text {GSS }}^{(V)} \end{gathered}$	$\begin{aligned} & \text { ID } \\ & (\mathrm{A}) \end{aligned}$	$\begin{gathered} \mathrm{PD} \\ \mathrm{TC}=25^{\circ} \mathrm{C} \\ (\mathrm{~W}) \end{gathered}$	RDS(on)(Ω)					$\begin{aligned} & \text { Ciss } \\ & \text { Ciyp } \\ & \text { (yp) } \end{aligned}$	Use
						$\mathrm{VGS}=15 \mathrm{~V}$		$\mathrm{VGS}=10 \mathrm{~V}$		ID		
2SK2406*	TP	450	± 30	1	30	-	-	3.5	4.5	0.5	300	
2SK1690	SMP	450	± 30	3	50	.	-	2.0	2.6	1.5	400	
2SK1691	SMP	450	± 30	5	40	.	.	1.0	1.4	2.5	700	
2SK1443LS	TO-220FI(LS)	450	± 30	1	20	.	-	3.5	4.5	0.5	250	
2SK1444LS	TO-220FI(LS)	450	± 30	3	25	-	-	2.0	2.6	1.5	400	AC
2SK1445LS	TO-220FI(LS)	450	± 30	5	30	-	-	1.0	1.4	2.5	700	
2SK1446LS	TO-220FI(LS)	450	± 30	7	35	.	-	0.6	0.8	4.0	1200	
2SK1447LS	T0-220FI(LS)	450	± 30	9	40	-	-	0.47	0.6	6.0	1600	
2SK2787LS*	TO-220FI(S)	450	± 30	8	40	-	-	0.55	0.75	5.0	1500	
2SK1451	TO-3PML	450	± 30	8	50	-	-	0.6	0.8	4.0	1200	
2SK1452	TO-3PML	450	± 30	10	60	-	-	0.47	0.6	6.0	1600	
2SK1453	TO-3PML	450	± 30	16	70	-	-	0.24	0.3	8.0	3200	
2SK1448	TO-3PB	450	± 30	8	100	.	.	0.6	0.8	4.0	1200	
2SK1449	TO-3PB	450	± 30	12	120	.	.	0.47	0.6	6.0	1600	
2SK1450	TO-3PB	450	± 30	20	150	-	-	0.24	0.3	10.0	3200	FAX,
2SK1454	TO-3PBL	450	± 30	30	250	-	-	0.12	0.16	15.0	6400	
2SK2616	TP	500	± 30	2	30	3.0	4.0	-	-	1.0	300	
2SK2617LS	TO-220FI(LS)	500	± 30	4	25	1.2	1.6	.	-	2.0	550	
2SK2618LS	TO-220FI(LS)	500	± 30	5	30	0.95	1.25	-	-	3.0	700	

Input Voltage AC 170 to 264 V

Discrete Devices for Switching Power Supplies and Chargers

Quasi-resonant type Block Diagram

Pin No.	Symbol	Function
1	FB	Input for feedback voltage and current sense
2	DELAY	Input for timing signal
3	DRAIN	Power MOSFET Drain
4	VIN	Start-up voltage and drive voltage
5	SOURCE(GND)	Power MOSFET Source (ground)

Delay -RCCt type ExPD

Type No.	$\begin{gathered} \mathrm{v}_{\mathrm{DSS}} \\ (\mathrm{~V}) \end{gathered}$	(${ }_{(1)}$ ($)$	$\mathrm{R}_{\mathrm{DS}}(\mathrm{on})(\Omega)$		$\begin{aligned} & \text { Input } \\ & \text { Voltage } \\ & \text { (VAC) } \end{aligned}$	$\begin{aligned} & \text { Max* }^{\text {Power }} \\ & \text { (W) } \end{aligned}$
			typ	max		
TN4R01	450	4.5	1.25	1.6	100/120	90
TN4R02		6	0.95	1.3		120
TN4RO3		3	1.95	2.5		60
TN4R04		6.5	0.8	1.04		130
tN6R03	650	4.5	1.55	2	220	160
					WIDE	80
TN6R04		5.5	1.2	1.6	220	180
		6.5	0.95		WIDE	90
TN6R05				1.2	220	200100
	800	2.5	3.9	5.2	WIDE	
TN8R01					$\stackrel{\text { WIDE }}{ }$	50
TN8R02		3	3.1	3.9	220	120
					WIDE	60
TN8RO3		4.5	1.75	2.3	220	160
					WIDE	80
TN8R04		3.5	2.45	3.2	$\stackrel{220}{\text { WIDE }}$	140 70

Quasi-resonant type ExPD

Type No.	$\begin{aligned} & \mathrm{v}_{\text {DSS }} \\ & (\mathrm{V}) \end{aligned}$	(${ }_{\text {(}}^{\text {(})}$	RDs(on) (Ω)		Input Voltage (VAC)	$\begin{aligned} & \text { Max* } \\ & \text { Power } \\ & \text { (W) } \end{aligned}$
			typ	max		
TN6Q03	650	4.5	1.6	2.1	220	160
					20	180
TN6004		5.5	1.2	1.6	WIDE	90

[^1]
Chargers

- H-II Series best suited for switching power supplies of battery chargers and AC adapters in various kinds of portable equipment.

Features

1. Achieves ultrafast switching operation by adopting SANO innovative LGCP* technology.
(*: Low Gate -Charge Proces). In commerical production
2. Low Qg (gate charge) ... Reduced by 40%.

[^2]

这这	

	nininion

	MeP
默	MCP 5 Bottom View
Ман6 Bottom View	
SMAP	

3	

	15S08
	z
PCPtypeA \square	ProtypeB

Notes on Package Types, Naming and Dimensions The package names used in this documentation are designed to indicate a rough classification of the packages used, and do not necessarily indicate the formal name of each individual package. Additionally, these package dimensions are reference values, Refer to the delivery specifications document of a particula product for the dimensions and formal name of the package.

[^0]: ISB, ISB-Solo, ISB-Duo and ISB-Quad are registered trademarks of SANYO Electric Co., Ltd.

[^1]: The avove-mentioned output electric power changes also win heat cissipa

[^2]: - FRD buit in

