

Preliminary

8-BIT SINGLE CHIP MICROCONTROLLER LC86F3448A

LC86F3448A

8-bit Single Chip Microcontroller with on-chip 64K-byte Flash Memory (ROM 48K-byte + CGROM 16K-byte), on-chip 640-byte RAM and 352×9 bit Display RAM

Overview

The LC86F3448A is a CMOS 8-bit single chip microcontroller with Flash Memory for the LC863400 series. This microcontroller contains the following on-chip functional blocks:

- CPU: Operable at a minimum bus cycle time of 0.424µs

- On-chip ROM capacity : 64K bytes Flash Memory

Program ROM : 48K bytes CGROM : 16K bytes - On-chip RAM capacity : 640 bytes

- OSD RAM: 352×9 bits

- Closed-Caption TV controller and the on-screen display controller
- Closed-Caption data slicer
- Four channels × 6-bit AD Converter
- Three channels × 7-bit PWM
- 16-bit timer/counter, 14-bit base timer
- IIC-bus compliant serial interface circuit (Multi-master type)
- ROM correction function
- 11-source 8-vectored interrupt system
- Integrated system clock generator and display clock generator

Only one X'tal oscillator (32.768 kHz) for PLL reference is used for both generators

All of the above functions are fabricated on a single chip.

The program is rewritable by using the on-board writing system after the LSI has been installed on the application board.

- ♦ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster / crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - 1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- ♦ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Note: This product includes the IIC bus interface circuit. If you intend to use the IIC bus interface, please notify us of this in advance of our receiving your program ROM code order.

Purchase of SANYO IIC components conveys a license under the Philips IIC Patents Rights to use these components in an IIC system, provided that the system conforms to the IIC Standard Specification as defined by Philips.

Trademarks

IIC is a trademark of Philips Corporation.

This production is produced and sold by SANYO under license of the Silicon Storage Technology Inc.

This catalog provides information as of February 2001. Specifications and information herein are subject to change without notice.

SANYO Electric Co., Ltd. Semiconductor SYSTEM-LSI Div. Microcontroller Development Dep. 1-1-1, Sakata Oizumi-Machi, Gunma, JAPAN

Features

(1) Built-in Flash Memory:

64K bytes

- Program ROM
 - Character ROM
 - Rewritable in page units
 128 bytes / page

- Page erase / program cycle 100 cycle per page (Ta=25 $\pm2^{\circ}$ C)

(2) Built-in Random Access Memory (RAM) : 640×8 bits (including 128 bytes for ROM correction function) 352×9 bits (for CRT display)

The LC86F3448A consists of 48K bytes of Program ROM space and 640 bytes of RAM space. For this microcontroller, the usable program ROM capacity and RAM capacity are the same size for the mask ROM version.

Mask ROM versions	Program ROM limit set	RAM limit set for the
compatible with the	for the LC86F3448A	LC86F3448A (including
LC86F3448A		128 bytes for the ROM
		correction function)
LC863448	49152 bytes	640 bytes
LC863440	40960 bytes	640 bytes
LC863432	32768 bytes	512 bytes
LC863428	28672 bytes	512 bytes
LC863424	24576 bytes	512 bytes
LC863420	20480 bytes	512 bytes
LC863416	16384 bytes	512 bytes

When using on-board rewriting system is selected by the option, the rewriting program (loader program) is allocated in the last 2K-byte of the memory ,following to 46k-byte (B800h)

(3) OSD functions

- Screen display : 36 characters × 16 lines (by software)

- RAM : 352 words (9 bits per word)

Display area : $36 \text{ words} \times 8 \text{ lines}$ Control area : $8 \text{ words} \times 8 \text{ lines}$

- Characters

Up to 252 kinds of 16×32 dot character fonts

(4 characters including 1 test character are not programmable)

Each font can be divided into two parts and used as two fonts (Ex. 16×16 dot character font \times 2) At least 111 characters need to be divide between a 16×18 dot and 8×9 dot character font to display the caption fonts.

- Various character attributes

 $\begin{array}{ll} Character\ colors & :\ 16\ colors\ (analog\ mode:\ lv_{p-p}\ output)\ /\ 8\ colors\ (digital\ mode) \\ Character\ background\ colors & :\ 16\ colors\ (analog\ mode:\ lv_{p-p}\ output)\ /\ 8\ colors\ (digital\ mode) \\ Fringe\ /\ shadow\ colors & :\ 16\ colors\ (analog\ mode:\ lv_{p-p}\ output)\ /\ 8\ colors\ (digital\ mode) \\ Full\ screen\ colors & :\ 16\ colors\ (analog\ mode:\ lv_{p-p}\ output)\ /\ 8\ colors\ (digital\ mode) \\ \hline \end{array}$

Rounding Underline

Italic character (slanting)

- Attribute can be changed without spacing
- Vertical display start line number can be set for each row independently (Rows can be overlapped)
- Horizontal display start position can be set for each row independently
- Horizontal pitch (bit 9 -16)*1 and vertical pitch (bit1-32) can be set for each row independently
- Different display modes can be set for each row independently

Caption • Text mode / OSD mode 1 / OSD mode 2 (Quarter size) / Simplified graphic mode

- Ten character sizes *1

Horiz. × Vert. =
$$(1 \times 1)$$
, (1×2) , (2×2) , (2×4) , (0.5×0.5)
 (1.5×1) , (1.5×2) , (3×2) , (3×4) , (0.75×0.5)

- Shuttering and scrolling on each row
- Simplified Graphic Display
- *1 Note : range depends on display mode : refer to the manual for details.
- (4) Data Slicer (closed caption format)
 - Closed caption data and XDS data extraction
 - NTSC/PAL, and extracted line can be specified

(5) Bus Cycle Time / Instruction-Cycle Time

Bus cycle time	Instruction cycle time	Clock divider	System clock oscillation	Oscillation Frequency	Voltage
0.424µs	0.848µs	1/2	Internal VCO	14.156MHz	4.5V to 5.5V
7.5µs	15.0µs	1/2	Internal RC	800kHz	4.5V to 5.5V
91.55µs	183.1µs	1/1	Crystal	32.768kHz	4.5V to 5.5V
183.1µs	366.2µs	1/2	Crystal	32.768kHz	4.5V to 5.5V

(6) Ports

- Input / Output Ports : 4 ports (23 terminals)

Data direction programmable in nibble units : 1 port (8 terminals)

(If the N-ch open drain output is selected by option, the corresponding port data can be read in output mode.)

Data direction programmable for each bit individually : 4 ports (15 terminals)

(7) AD converter

- 4 channels × 6-bit AD converters

(8) Serial interfaces

- IIC-bus compliant serial interface (Multi-master type)

Consists of a single built-in circuit with two I/O channels. The two data lines and two clock lines can be connected internally.

(9) PWM output

- 3 channels × 7-bit PWM

(10) Timer

- Timer 0: 16-bit timer/counter

With 2-bit prescaler + 8-bit programmable prescaler

Mode 0: Two 8-bit timers with a programmable prescaler

Mode 1: 8-bit timer with a programmable prescaler + 8-bit counter

Mode 2: 16-bit timer with a programmable prescaler

Mode 3: 16-bit counter

The resolution of timer is 1 tCYC.

- Base timer

Generate every 500ms overflow for a clock application (using 32.768kHz crystal oscillation for the base timer clock)

Generate every $976\mu s$, 3.9ms, 15.6ms, 62.5ms overflow (using 32.768kHz crystal oscillation for the base timer clock)

Clock for the base timer is selectable from 32.768kHz crystal oscillation, system clock or programmable prescaler output of Timer 0

(11) Remote control receiver circuit (connected to the P73/INT3/T0IN terminal)

- Noise rejection function
- Polarity switching

(12) Watchdog timer

External RC circuit is required

Interrupt or system reset is activated when the timer overflows

(13) ROM correction function

Max 128 bytes / 2 addresses

(14) Interrupts

- 11 source 8 vectored interrupts
 - 1. External Interrupt INTO
 - 2. External Interrupt INT1
 - 3. External Interrupt INT2, Timer/counter T0L (Lower 8 bits)
 - 4. External Interrupt INT3, base timer
 - 5. Timer/counter T0H (Upper 8 bits)
 - 6. Data slicer
 - 7. Vertical synchronous signal interrupt (\overline{VS}), Scan line
 - 8. IIC

- Interrupt priority control

Three interrupt priorities are supported (low, high and highest) and multi-level nesting is possible. Low or high priority can be assigned to the interrupts from 3 to 8 listed above. For the external interrupt INTO and INT1, low or highest priority can be set.

(15) Sub-routine stack level

- A maximum of 128 levels (stack is built in the internal RAM)

(16) Multiplication/division instruction

- 16 bits \times 8 bits (7 instruction cycle times)
- 16 bits / 8 bits (7 instruction cycle times)

(17) 3 oscillation circuits

- Built-in RC oscillation circuit used for the system clock
- Built-in VCO circuit used for the system clock and OSD
- X'tal oscillation circuit used for base timer, system clock and PLL reference

(18) Standby function

- HALT mode

The HALT mode is used to reduce the power dissipation. In this operation mode, the program execution is stopped. This mode can be released by the interrupt request or the system reset.

HOLD mode

The HOLD mode is used to stop the oscillations; RC (internal), VCO, and X'tal oscillations. This mode can be released by the following conditions.

- Pull the reset terminal (\overline{RES}) to low level.
- Feed the selected level to either P70/INT0 or P71/INT1.

(19) Package

- MFP36S
- DIP36S

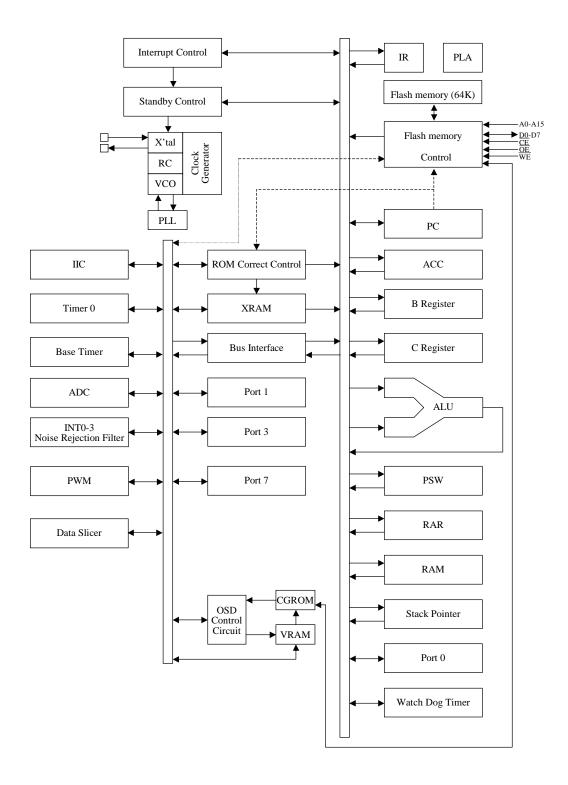
(20) Development tools

- Evaluation chip: LC863096

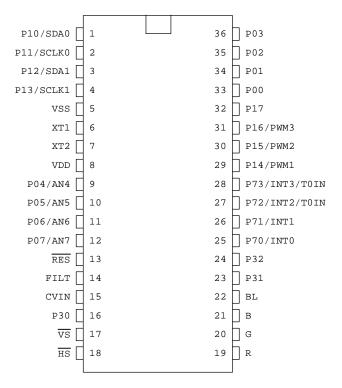
- Emulator: EVA86000 (main) + ECB863400 (evaluation chip board)

+ POD36-CABLE (cable) + POD36-DIP (for DIP36S) or POD36-MFP (for MFP36S)

Write Flash Memory


SANYO provides special services including writing data to Flash Memory and stamping.

There is a charge for these services.


Please feel free to ask our sales persons for details.

Ver. 1.02 5/24

System Block Diagram

Pin Assignment

Ver. 1.02 7/24

Pin Description

Pin Description Table

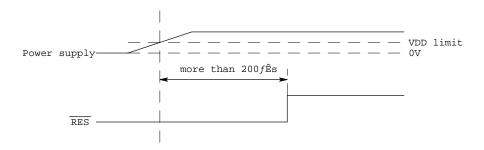
Terminal	I/O	Function Description	Option	Flash memory mode
Terminar	1/0	Tunetion Bescription	Option	(Parallel input/
				output mode)
VSS	-	Negative power supply		1 ,
XT1	I	Input terminal for crystal oscillator		
XT2	0	Output terminal for crystal oscillator		
VDD	-	Positive power supply		
RES	I	Reset terminal		Input to set up mode
FILT	0	Filter terminal for PLL		
VS	I	Vertical synchronization signal input terminal		Input to set up mode
HS	I	Horizontal synchronization signal input terminal		
R	0	Red (R) output terminal of RGB image output		Address input A8
G	0	Green (G) output terminal of RGB image output		Address input A9
В	0	Blue (B) output terminal of RGB image output		Address input A10
BL	0	Fast blanking control signal		Address input A11
		Switch TV image signal and OSD image signal		
Port 0		•8-bit input/output port,	Pull-up resistor	Address input
P00 - P07	I/O	Input/output can be specified in nibble unit	provided/not provided	A0 to A7
		•Other functions	Output Format	
		AD converter input ports(P04-07)	CMOS/Nch-OD	
Port 1		•8-bit input/output port	Output Format	Data input/output
P10 - P17	I/O	Input/output can be specified in a bit	CMOS/Nch-OD	D0 to D7
		(programmable pull-up resister provided)		
		•Other functions		
		P10 IIC0 data I/O		
		P11 IIC0 clock output		
		P12 IIC1 data I/O		
		P13 IIC1 clock output		
		P14 PWM1 output		
		P15 PWM2 output		
		P16 PWM3 output		
Port 3		•3-bit input/output port		control signal WE
P30 – P32	I/O	Input/output can be specified in a bit		control signal OE
		(CMOS input/output with programmable		control signal CE
		pull-up resister)		Control Signal CE

Terminal	I/O		Function Description						Opti	on
Port 7		•4-bit ii	•4-bit input/output port						Address input	A12-A15
P70	I/O	Input	or outpu	t can be spec	cified for	each bit				
P71 - P73		P70:	I/O wit	n programm	able pull-ı	ıp resister				
		P71	to P73:	CMOS input	output w	ith progra	mmable p	ull-up		
		res	ister					J		
		•Other	function							
		F	70 IN	VTO input/H	OLD relea	se input/				
			N	ch-Tr. outpu	t for watc	hdog time	er			
		F	71 IN	VT1 input/H	OLD relea	ise input				
		F	72 IN	JT2 input/Ti	mer 0 eve	nt input				
		F	73 IN	TT3 input (noi	se rejection	n filter conr	nected)/			
			T	mer 0 event	input					
		Interrup	t receiv	er format, ve	ector addr	esses				
			rising	falling	rising/	H level	L level	vector		
					falling					
		INT0	enabl	e enable	disable	enable	enable	03H		
		INT1	enabl	e enable	disable	enable	enable	0BH		
		INT2	enabl	e enable	enable	disable	disable	13H		
		INT3	enabl	e enable	enable	disable	disable	1BH		

Note: A capacitor of at least 10µF must be inserted between VDD and VSS when using this IC.

- Output form and existence of pull-up resistor for all ports can be specified for each bit.
- Programmable pull-up resistor is always connected regardless of port option, CMOS or N-ch open drain output in port 1.

User options


User options can be changed using Flash Memory data.

A kind of option	Pin, Circuits	
Input/output form of	Port 0	1. Input : Without pull-up MOS Tr.
input/output ports	(Specified in a bit)	Output : N-channel open drain
		2. Input : With pull-up MOS Tr.
		Output : CMOS
	Port 1	1. Input : With programmable pull-up MOS Tr.
	(Specified in a bit)	Output : N-channel open drain
		2. Input : With programmable pull-up MOS Tr.
		Output : CMOS

Notice for use

- Input level of terminal \overline{RES} at power on

Terminal \overline{RES} must be held low for at least 200 μ s after the supply voltage exceeds the power supply lower limit.

-difference between the Mask version and Flash version(LC86F3448A)

1. the operation after release of reset : The mask version operates the program from the address 0 in the program counter as soon as detecting the H level on the reset port.

The flash version operates the program from the address 0 in the

program counter after setting the option.

2. Current dissipation : The current dissipation of the flash version is bigger than that of the

mask version.

Please refer to the latest semiconductor news.

- Conditions during reset and after release of reset

Port options are set using Flash Memory data.

Port options are set internally within approximately 3ms after logic HIGH is applied to the RESET terminal. The configuration of the port outputs change over the duration of this period. Then the Program Counter is set to 0 and program execution begins.

During reset, and in the few hundred milliseconds after reset is released, the port options on certain of the ports will not yet have been set. The conditions of the various ports during reset or on release of reset have been collected in the following table. Please refer to it when analyzing circuits where these conditions apply.

Pins	Options	Condition during and on release of reset
P0	Input : Without pull up MOS	Output -off
	transistor	Input mode: High impedance
	Output: N-channel open drain	
	Input : With pull up MOS	Output-off
	transistor	Flash version: During reset and in the first few
	Output : CMOS	hundred µs after reset is released, the pull-up
		MOS transistor is OFF. Thereafter, set to input
		mode with pull-up MOS Tr. ON
		Mask version: During reset the pull-up
		MOS transistor is OFF.
		After soon, set to input mode with pull-up
		MOS Tr. ON
P1	Input : With programmable pull up MOS	Output-off
rı	transistor	Input mode: High impedance
	Output : N-channel open drain	
	Input : With programmable pull up MOS	
	transistor	
	Output : CMOS	
P3	No options	Output -off
	Input : With programmable pull up MOS transistor	Input mode: High impedance
	Output : CMOS	
P7	No options	Output-off
	Input : With programmable pull up MOS	Input mode : High impedance
	transistor	
	Output: With pull up MOS (P70)	
	CMOS (P71 - P73)	

On-board writing system

The LC86F3448A has the On-board writing system. The program is renewable by using SANYO Flash On-board System after the LSI has been installed on the application board.

This system is composed of 4 types divided by the combination of mode setting pin and communication pin. Each type system has to connect the 6 pins (VDD,VSS,RES, communication pins) with the interface board of SANYO Flash On-board System.

It is necessary that the pins to be used for the rewriting system should be able to be separated from the application board properly.

The system type is selected by the option setting program (Su86K.exe).

types	mode setting pin	communication pins
type1	RES pin (high voltage(12V) applied)	P30(DATA1),P31(DATA0),P32(CLK)
type2	RES pin (high voltage(12V) applied)	P30(DATA1),P11(DATA0),P10(CLK)
type3	P30 pin (High level voltage (5V)applied)	P30(ENA/DATA1),P31(DATA0),P32(CLK)
type4	P30 pin (High level voltage (5V)applied)	P30(ENA/DATA1),P11(DATA0),P10(CLK)

- Type 3 or 4 is selected: P30 is exclusive for the on-board system. This pin must always be pulled-down, so this pin can't be used for other applications.
- The loader program must be written into the ROM to use On-board writing system.

The loader program should be written into the ROM before the LSI has been installed on the board by the the general purpose PROM programs.

When the option setting selects the this system to use, the loader program automatically links on the user program linking.

Please ask to our sales persons before using On-board writing system.

Use of PROM Conversion board

When reading or writing data to the LC86F3448A using our exclusive conversion board (W86F3448D, W86F3448M) general purpose PROM programs can be used.

- (1) Name of conversion boards
 - W86F3448D • DIP36S purpose
 - W86F3448M • MFP36S purpose

(2) Available PROM programmers

The LC86F3448A does not support a silicon signature feature. Do not use the feature (automatic device type selection) when programming this device.

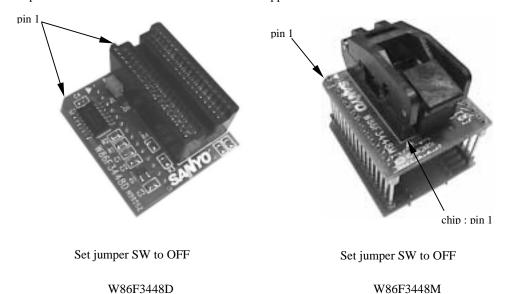
To avoid erasing the program, confirm the setting of the protection for written program is active before using. Single word write

2000				
Manufacture	facture Name of device		applicable device (code)	Data protection
				setting after write
				operation
Minato Electronics	MODEL 1890A + OU-910	V4.1	SST Co., Ltd. 29EE512 (D617)	Protected
Ando	AF-9708	01.00	SST Co., Ltd. 29EE512 (47100)	Protected
Data I. O.	ChipLab	V5.3	SST Co., Ltd. 29EE512	Selectable

Write multiple words

Manufacture	Name of device	version	applicable device (code)	Data protection
				setting after write
				operation
Minato Electronics	MODEL 1892 + TYPE9102A	V4.1	SST Co., Ltd. 29EE512 (D617)	Protected

(3) Notes


When using the conversion board, all of the jumper SW must be set to the OFF position. If set to the ON position, read/write operations will not perform correctly.

(4) Location of pin 1

Pin 1 of the conversion board should be located as indicated below.

W86F3448D : when viewing from the edge closest to jumper SW, pin 1 is located on the upper left of both the chip and conversion board.

W86F3448M: when viewing from the edge closest to jumper SW, pin 1 of the chip is located on the lower left while pin 1 of the conversion board is located on the upper left.

1. Absolute maximum ratings / VSS=0V and Ta=25°C

Para	meter	Symbol	Pins	Conditions		Limits			
					VDD[V]	min.	typ.	max.	unit
Supply v	oltage	VDDMAX	VDD			-0.3		+6.0	V
Input vol	tage	VI(1)	• RES , HS , VS , CVIN			-0.3		VDD+0.3	
Output v	oltage	VO(1)	R, G, B, BL, FILT			-0.3		VDD+0.3	
Input/out voltage	put	VIO	•Ports 0, 1, 3, 7			-0.3		VDD+0.3	
High level	Peak output	IOPH(1)	•Ports 0, 1, 3, 7	•CMOS output •For each pin.		-4			mA
output current	current	IOPH(2)	R, G, B, BL	•CMOS output •For each pin.		-5			
	Total output	ΣIOAH(1)	Ports 0, 1	The total of all pins.		-20			
	current	ΣIOAH(2)	Ports 3, 7	The total of all pins.		-10			
		ΣIOAH(3)	R, G, B, BL	The total of all pins.		-12			
Low	Peak	IOPL(1)	Ports 0, 1, 3	For each pin.				20	
level	output	IOPL(2)	Port 7	For each pin.				15	
output	current	IOPL(3)	R, G, B, BL	For each pin.				5	
current	Total output	$\Sigma IOAL(1)$	Ports 0, 1	The total of all pins.				40	
	current	ΣIOAL(2)	Ports 3, 7	The total of all pins.				30	,
		ΣIOAL(3)	R, G, B, BL	The total of all pins.				15	
Maximu	n power	Pdmax	MFP36S	Ta=-10 to +70°C				380	mW
dissipation	on		DIP36S					560	
Operatin temperat range		Topg				-10		+70	°C
Storage temperat range	ure	Tstg				-55		+125	

2. Recommended operating range / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Operating	VDD(1)	VDD	$0.844 \mu s \le tCYC$		4.5		5.5	V
supply voltage			≤ 0.852µs					
range	VDD(2)		$4\mu s \le tCYC \le$		4.5		5.5	
			400μs					
Hold voltage	VHD	VDD	RAMs and the		2.0		5.5	
			registers data					
			are kept in					
			HOLD mode.					
High level input voltage	VIH(1)	Port 0	Output disable	4.5 - 5.5	0.6VDD		VDD	
	VIH(2)	•Ports 1,3 (Schumitt) •Port 7 (Schumitt) port input/interrupt • HS, VS, RES	Output disable	4.5 - 5.5	0.75VDD		VDD	
	VIH(3)	(Schumitt) Port 70	Output disable	4.5 - 5.5	VDD-0.5		VDD	
		Watchdog timer input			*****		0.41100	
Low level	VIL(1)	Port 0	Output disable	4.5 - 5.5	VSS		0.2VDD 0.25VDD	
input voltage	VIL(2)	•Ports 1,3 (Schumitt) •Port 7 (Schumitt) port input/interrupt • HS, VS, RES (Schumitt)	Output disable	4.5 - 5.5	VSS		0.23 V DD	
	VIL(3)	Port 70 Watchdog timer input	Output disable	4.5 - 5.5	VSS		0.6VDD	
CVIN	VCVIN	CVIN		5.0	0.7Vp-p	1Vp-p	1.4Vp-p	Vp-p
Operation cycle time	tCYC(1)		•All functions operating	4.5 - 5.5	0.844	0.848	0.852	μs
	tCYC(2)		•AD converter operating •OSD and Data slicer are not operating	4.5 - 5.5	0.844		30	
	tCYC(3)		OSD, AD converter and Data slicer are not operating	4.5 - 5.5	0.844		400	
Oscillation frequency range	FmRC		Internal RC oscillation	4.5 - 5.5	0.4	0.8	3.0	MH z

^{*} Vp-p : Peak-to-peak voltage

Ver. 1.02 15/24

3. Electrical characteristics / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
High level input current	IIH(1)	Ports 0, 1, 3, 7	•Output disable •Pull-up MOS Tr. OFF •VIN=VDD (including the off-leak current of the output Tr.)	4.5 - 5.5			1	μА
	IIH(2)	• RES • HS , VS	•VIN=VDD	4.5 - 5.5			1	
Low level input current	IIL(1)	Ports 0, 1, 3, 7	Output disable Pull-up MOS Tr. OFF VIN=VSS (including the off-leak current of the output Tr.)	4.5 - 5.5	-1			
	IIL(2)	• RES • HS , VS	VIN=VSS	4.5 - 5.5	-1			
High level output voltage	VOH(1)	•CMOS output of ports 0,1,3,71-73	IOH=-1.0mA	4.5 - 5.5	VDD-1			V
	VOH(2)	R, G, B, BL	IOH=-0.1mA R.G.B: digital mode	4.5 - 5.5	VDD-0.5			
Low level	VOL(1)	Ports 0,1,3,71-73	IOL=10mA	4.5 - 5.5			1.5	
output voltage	VOL(2)	Ports 0,3,71-73	IOL=1.6mA	4.5 - 5.5			0.4	
	VOL(3)	•R, G, B, BL •Port 1	IOL=3.0mA R.G.B: digital mode	4.5 - 5.5			0.4	
	VOL(4)	Port 70	IOL=1mA	4.5 - 5.5			0.4	
Pull-up MOS Tr. resistance	Rpu	•Ports 0, 1, 3, 7	VOH=0.9VDD	4.5 - 5.5	13	38	80	kΩ
Bus terminal short circuit resistance (SCL0-SCL1, SDA0-SDA1)	RBS	•P10-P12 •P11-P13		4.5 - 5.5			130	Ω
Hysteresis voltage	VHIS	•Ports 1, 3, 7 • RES • HS, VS	Output disable	4.5 - 5.5		0.1VDD		V
Input clump voltage	VCLMP	CVIN		5.0	2.3	2.5	2.7	
Pin capacitance	СР	All pins	•f=1MHz •Every other terminals are connected to VSS. •Ta=25°C	4.5 - 5.5		10		pF

4. IIC input/output conditions / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Stan	dard	High	speed	unit
		min.	max.	min.	max.	
SCL Frequency	fSCL	0	100	0	400	kHz
BUS free time between stop - start	tBUF	4.7	-	1.3	-	μs
HOLD time of start, restart condition	tHD;STA	4.0	-	0.6	1	μs
L time of SCL	tLOW	4.7	-	1.3	-	μs
H time of SCL	tHIGH	4.0	-	0.6	1	μs
Set-up time of restart condition	tSU;STA	4.7	-	0.6	-	μs
HOLD time of SDA	tHD;DAT	0	-	0	0.9	μs
Set-up time of SDA	tSU;DAT	250	-	100	1	ns
Rising time of SDA, SCL	tR	-	1000	20+0.1C	300	ns
				b		
Falling time of SDA, SCL	tF	-	300	20+0.1C	300	ns
				b		
Set-up time of stop condition	tSU;STO	4.0	-	0.6	-	μs

Refer to figure 8
Cb: Total capacitance of all BUS (unit: pF) (Note)

5. Pulse input conditions / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
High/low level pulse width	tPIH(1) tPIL(1)	•INT0, INT1 •INT2/T0IN	•Interrupt acceptable •Timer0-countable	4.5 - 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (1 tCYC is selected for noise rejection clock.)	•Interrupt acceptable •Timer0-countable	4.5 - 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (16 tCYC is selected for noise rejection clock.)	•Interrupt acceptable •Timer0-countable	4.5 - 5.5	32			
	tPIH(4) tPIL(4)	INT3/T0IN (64 tCYC is selected for noise rejection clock.)	•Interrupt acceptable •Timer0-countable	4.5 - 5.5	128			
	tPIL(5)	RES	Reset acceptable	4.5 - 5.5	200			μs
	tPIH(6) tPIL(6)	HS, VS	•Display position controllable (Note) •The active edge of HS and VS must be apart at least 1 tCYC.	4.5 - 5.5	8			
Rising/falling time	tTHL tTLH	HS	Refer to figure 4	4.5 - 5.5			500	ns

Ver. 1.02 17/24

6. AD converter characteristics / Ta=-10°C to + 70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Resolution	N			4.5 - 5.5		6		bit
Absolute precision	ET		(Note)				±1	LSB
Conversion time	tCAD	Vref selection to conversion finish	1 bit conversion time = 2 × Tcyc			1.69		μs
Analog input voltage range	VAIN	AN4 - AN7			VSS		VDD	V
Analog port	IAINH		VAIN=VDD				1	μA
input current	IAINL		VAIN=VSS		-1			

(Note) Absolute precision does not include quantizing error (1/2LSB).

7. Analog mode RGB characteristics / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Analog output		R.G.B	Low level output	5.0	0.45	0.5	0.55	V
voltage		Analog output mode	Intensity output		0.90	1.0	1.10	
			High level output		1.35	1.5	1.65	
Time setting		R.G.B	70%				50	ns
			10pf load					

8. Sample current dissipation characteristics / Ta=-10°C to +70°C, VSS=0V

The sample current dissipation characteristics is the measurement result of Sanyo provided evaluation board when the recommended circuit parameters shown in the sample oscillation circuit characteristics are used externally. The currents through the output transistors and the pull-up MOS transistors are ignored.

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Current dissipation during basic operation	IDDOP(1)	VDD	•FmX'tal=32.768kHz X'tal oscillation •System clock: VCO •VCO for OSD operating •OSD is Digital mode •Internal RC oscillation stops	4.5 - 5.5		29	46	mA
	IDDOP(2)	VDD	•FmX'tal=32.768kHz X'tal oscillation •System clock: VCO •VCO for OSD operating •OSD is Analog mode •Internal RC oscillation stops	4.5 - 5.5		37	57	
	IDDOP(3)	VDD	•FmX'tal=32.768kHz X'tal oscillation •System clock: X'tal •VCO for system VCO for OSD, internal RC oscillation stop •Data slicer, AD converters stop	4.5 - 5.5		100	300	μΑ
Current dissipation in HALT mode	IDDHALT(1)	VDD	•HALT mode •FmX'tal=32.768kHz X'tal oscillation •System clock: VCO •VCO for OSD stops •Internal RC oscillation stops	4.5 - 5.5		6	10	mA
	IDDHALT(2)	VDD	•HALT mode •FmX'tal=32.768kHz X'tal oscillation •VCO for system stops •VCO for OSD stops •System clock: Internal RC	4.5 - 5.5		430	1000	μА
	IDDHALT(3)	VDD	•HALT mode •FmX'tal=32.768kHz X'tal oscillation •VCO for system stops •VCO for OSD stops •System clock: X'tal	4.5 - 5.5		60	200	
Current dissipation in HOLD mode	IDDHOLD	VDD	•HOLD mode •All oscillation stops.	4.5 - 5.5		0.05	20	μA

 $(Note\ 3)\quad The\ currents\ of\ the\ output\ transistors\ and\ the\ pull-up\ MOS\ transistors\ are\ ignored.$

Recommended Oscillation Circuit and Sample Characteristics

The sample oscillation circuit characteristics in the table below is based on the following conditions:

- Recommended circuit parameters are verified by an oscillator manufacturer using a Sanyo provided oscillation evaluation board.
- Sample characteristics are the result of the evaluation with the recommended circuit parameters connected externally.

Recommended oscillation circuit and sample characteristics ($Ta = -10 \text{ to } +70^{\circ}\text{C}$)

Frequency	Manufacturer	Oscillator	Re		nded circo neters	uit	Operating supply voltage range	Oscil stabil tir		Notes
			C1	C2	Rf	Rd		typ.	max	
32.768kHz	Seiko Epson	C-002RX	18pF	18pF	OPEN	390kΩ	4.5 – 5.5V	1.00S	1.50S	

Notes The oscillation stabilizing time period is the time until the VCO oscillation for the internal system becomes stable after the following conditions. (Refer to Figure 2.)

- 1. The VDD becomes higher than the minimum operating voltage after the power is supplied.
- 2. The HOLD mode is released.

The sample oscillation circuit characteristics may differ applications. For further assistance, please contact with oscillator manufacturer with the following notes in your mind.

- Since the oscillation frequency precision is affected by wiring capacity of the application board, etc., adjust the oscillation frequency on the production board.
- The above oscillation frequency and the operating supply voltage range are based on the operating temperature of -10°C to +70°C. For the use with the temperature outside of the range herein, or in the applications requiring high reliability such as car products, please consult with oscillator manufacturer.
- When using the oscillator which is not shown in the sample oscillation circuit characteristics, please consult with Sanyo sales personnel.

Since the oscillation circuit characteristics are affected by the noise or wiring capacity because the circuit is designed with low gain in order to reduce the power dissipation, refer to the following notices.

- The distance between the clock I/O terminal (XT1 terminal XT2 terminal) and external parts should be as short as possible.
- The capacitors' VSS should be allocated close to the microcontroller's GND terminal and be away from other GND.
- The signal lines with rapid state changes or with large current should be allocated away from the oscillation circuit.

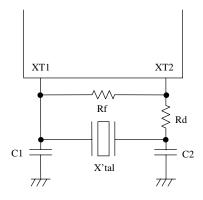


Figure 1 Recommended oscillation circuit.

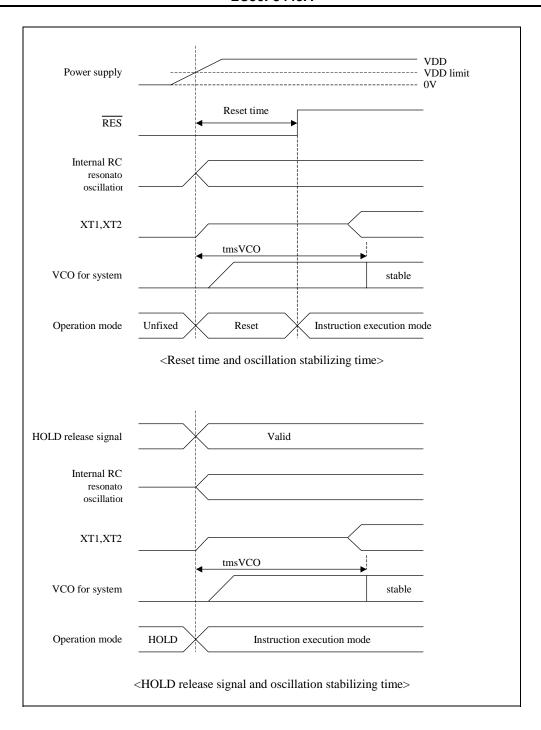


Figure 2 Oscillation stabilizing time

Ver. 1.02 21/24

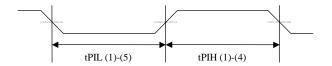


Figure 3 Pulse input timing condition – 1

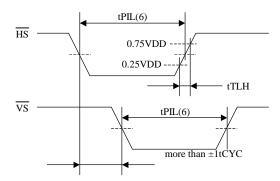


Figure 4 Pulse input timing condition - 2

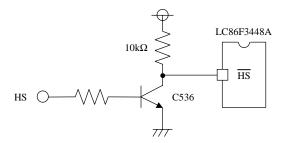
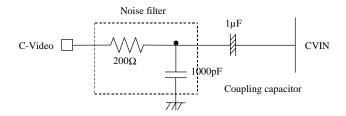



Figure 5 Recommended Interface circuit

Output impedance of C-Video before Noise filter should be less then 100Ω .

Figure 6 CVIN recommended circuit

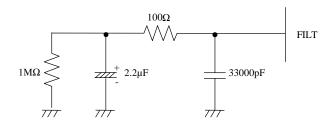
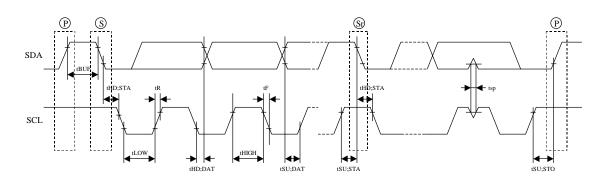



Figure 7 FILT recommended circuit

(Note) Place FILT parts on board as close to the microcontroller as possible.

 $S: start\ condition$

P : stop condition Sr : restart condition tsp : Spike suppression

Standard mode : not exist

High speed mode: less than 50ns

Figure 8 IIC timing

Ver. 1.02 23/24

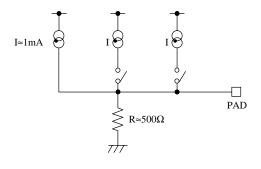


Figure 9 R.G.B. analog output equivalent circuit