National Semiconductor

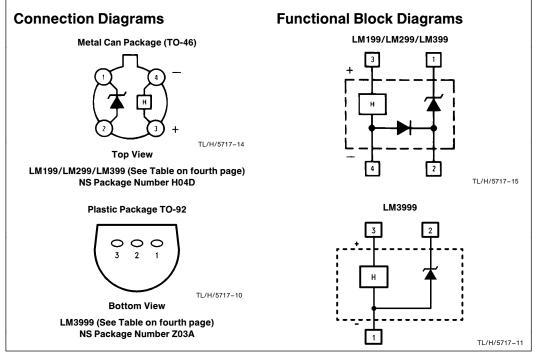
December 1994

.M199/LM299/LM399/LM3999 Precision Reference

LM199/LM299/LM399/LM3999 Precision Reference

General Description

The LM199 series are precision, temperature-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.


The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes. The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from -55° C to $+125^{\circ}$ C while the LM299 is rated for operation from -25° C to $+85^{\circ}$ C and the LM399 is rated from 0°C to $+70^{\circ}$ C.

The LM3999 is packaged in a standard TO-92 package and is rated from 0°C to $\,+\,70^\circ\text{C}$

Features

- Guaranteed 0.0001%/°C temperature coefficient
- \blacksquare Low dynamic impedance 0.5 $\!\Omega$
- Initial tolerance on breakdown voltage 2%
- Sharp breakdown at 400 μA
- Wide operating current 500 µA to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization 300 mW at 25°C
- Long term stability 20 ppm
- Proven reliability, low-stress packaging in TO-46 integrated-circuit hermetic package, for low hysteresis after thermal cycling. 33 million hours MTBF at T_A = +25°C (T_J = +86°C)
- Certified long term stability available
- MIL-STD-883 compliant

© 1995 National Semiconductor Corporation TL/H/5717

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings				
Specifications for Military/Aerospace produc contained in this datasheet. Refer to the follo	Reference to Substrate Voltage V _(RS) (Note 1) 40\ -0.1\			
ability Electrical Test Specifications do		Operating Temperature Range		
RETS199X for LM199, RETS199AX for LM199	Α.	LM199	−55°C t	o +125°C
Temperature Stabilizer Voltage		LM299	-25°C	to +85°C
LM199/LM299/LM399	40V	LM399/LM3999	_0°C	to +70°C
LM3999	36V	Storage Temperature Range	−55°C t	o +150°C
Reverse Breakdown Current	20 mA	Soldering Information		
Forward Current		TO-92 package (10 sec.)		+ 260°C
LM199/LM299/LM399	1 mA	TO-46 package (10 sec.)		+ 300°C
LM3999	-0.1 mA			

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions		LM199H/LM299H			LM399H		
Farameter			Тур	Мах	Min	Тур	Max	Units
Reverse Breakdown Voltage	$0.5 \text{ mA} \leq \text{I}_{\text{R}} \leq 10 \text{ mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.5 \text{ mA} \leq I_{\text{R}} \leq 10 \text{ mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	I _R = 1 mA		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$ \begin{array}{c} -55^{\circ}C \leq T_{A} \leq +85^{\circ}C \\ +85^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ -25^{\circ}C \leq T_{A} \leq 85^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq +70^{\circ}C \\ \end{array} \begin{array}{c} LM199 \\ LM299 \\ LM299 \\ LM399 \\ \end{array} $		0.00003 0.0005 0.00003	0.0001 0.0015 0.0001		0.00003	0.0002	%/°C %/°C %/°C %/°C
RMS Noise	10 Hz \leq f \leq 10 kHz		7	20		7	50	μV
Long Term Stability	Stabilized, 22°C \leq T _A \leq 28°C, 1000 Hours, I _R =1 mA \pm 0.1%		20			20		ppm
Temperature Stabilizer Supply Current	$T_A = 25^{\circ}$ C, Still Air, $V_S = 30V$ $T_A = -55^{\circ}$ C		8.5 22	14 28		8.5	15	mA
Temperature Stabilizer Supply Voltage		9		40	9		40	v
Warm-Up Time to 0.05%	$V_{S} = 30V, T_{A} = 25^{\circ}C$		3			3		sec.
Initial Turn-on Current	$9 \le V_S \le 40$, $T_A = +25^{\circ}C$, (Note 3)		140	200		140	200	mA

Electrical Characteristics (Note 2)

Demonster					
Parameter	Conditions	Min	Тур	Мах	Units
Reverse Breakdown Voltage	$0.6 \text{ mA} \leq I_{R} \leq 10 \text{ mA}$	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.6 \text{ mA} \leq \text{I}_{\text{R}} \leq 10 \text{ mA}$		6	20	mV
Reverse Dynamic Impedance	$I_{R} = 1 \text{ mA}$		0.6	2.2	Ω
Reverse Breakdown Temperature Coefficient	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		0.0002	0.0005	%/°C
RMS Noise	$10 \text{ Hz} \leq f \leq 10 \text{ kHz}$		7		μV
Long Term Stability	Stabilized, 22°C \leq T_A \leq 28°C, 1000 Hours, I_R = 1 mA $\pm 0.1\%$		20		ppm
Temperature Stabilizer	$T_A = 25^{\circ}C$, Still Air, $V_S = 30V$		12	18	mA
Temperature Stabilizer Supply Voltage				36	v
Warm-Up Time to 0.05%	$V_{S} = 30V, T_{A} = 25^{\circ}C$		5		sec.
Initial Turn-On Current	$9 \le V_S \le 40, T_A = 25^{\circ}C$		140	200	mA

Parameter	Conditions	LM199AH, LM299AH			LM399AH			Units
Falameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reverse Breakdown Voltage	$0.5 \text{ mA} \le I_{R} \le 10 \text{ mA}$		6.95	7.1	6.6	6.95	7.3	٧
Reverse Breakdown Voltage Change with Current	$0.5 \text{ mA} \le I_{\text{R}} \le 10 \text{ mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	I _R = 1 mA		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$ \begin{array}{c} -55^{\circ}C \leq T_{A} \leq +85^{\circ}C \\ +85^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ -25^{\circ}C \leq T_{A} \leq 85^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq +70^{\circ}C \\ \end{array} \begin{array}{c} LM199A \\ LM299A \\ M299A \\ LM299A \\ LM399A \\ \end{array} $		0.0005	0.00005 0.0010 0.00005		0.00003	0.0001	%/% %/% %/%
RMS Noise	$10 \text{ Hz} \leq f \leq 10 \text{ kHz}$		7	20		7	50	μV
Long Term Stability	Stabilized, 22°C≤T _A ≤28°C, 1000 Hours, I _B =1 mA±0.1%		20			20		ppn
Temperature Stabilizer Supply Current	$T_A = 25^{\circ}$ C, Still Air, $V_S = 30$ V $T_A = -55^{\circ}$ C		8.5 22	14 28		8.5	15	mA
Temperature Stabilizer Supply Voltage				40	9		40	v
Warm-Up Time to 0.05%	$V_{S} = 30V, T_{A} = 25^{\circ}C$		3			3		sec
Initial Turn-on Current	$9 \le V_S \le 40, T_A = +25^{\circ}C$, (Note 3)		140	200		140	200	mA
Parameter	Conditions		AH-20, LM2		_	LM399AH		Uni
		Min	Тур	Max	Min	- 71	Max	
Reverse Breakdown Voltage	$0.5 \text{ mA} \le I_R \le 10 \text{ mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change With Current	$0.5 \text{ mA} \le I_{\text{R}} \le 10 \text{ mA}$		6	9		6	12	m\
Reverse Dynamic Impedance	$I_R = 1 \text{ mA}$		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$ \begin{array}{c} -55^{\circ}C \leq T_{A} \leq 85^{\circ} \\ 85^{\circ}C \leq T_{A} \leq 125^{\circ}C \\ -25^{\circ}C \leq T_{A} \leq 85^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ \end{array} \begin{array}{c} LM199A \\ LM19 \\ LM$		0.00002 0.0005 0.00002	0.00005 0.0010 0.00005		0.00003	0.0001	%/° %/° %/°
RMS Noise	10 Hz \leq f \leq 10 kHz		7	20		7	50	μ٧
Long Term Stability	Stabilized, 22°C≤T _A ≤28°C, 1000 Hours, I _B =1 mA±0.1%		8	20		9	50	ppr
	$T_A = 25^{\circ}C$, Still Air, $V_S = 30V$ $T_A = 55^{\circ}C$		8.5 22	14 28		8.5	15	m/
•						1	1	
Supply Current Temperature Stabilizer		9		40	9		40	V
Temperature Stabilizer Supply Current Temperature Stabilizer Supply Voltage Warm-Up Time to 0.05%		9	3	40	9	3	40	V s

Note 2: These specifications apply for 30V applied to the temperature stabilizer and $-55^{\circ}C \le T_A \le +125^{\circ}C$ for the LM199; $-25^{\circ}C \le T_A \le +85^{\circ}C$ for the LM299 and $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM399 and LM3999.

Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.

Note 4: Do not wash the LM199 with its polysulfone thermal shield in TCE.

Note 5: A military RETS electrical test specification is available for the LM199H/883, LM199AH/883, and LM199AH-20/883 on request.

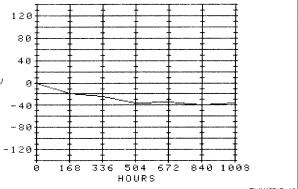
Ordering Info	rmation			
Initial Tolerance	0°C to +70°C	-25°C to +85°C	-55°C to +125°C	NS Package
2%		LM299AH	LM199AH, LM199AH/883	H04D
5%	LM399H LM399AH	LM299H	LM199H, LM199H/883	H04D
5%	LM3999Z			Z03A
Guaranteed Long Term Stability	LM399AH-50	LM299AH-20	LM199AH-20, LM199AH-20/883	H04D

Certified Long Term Drift

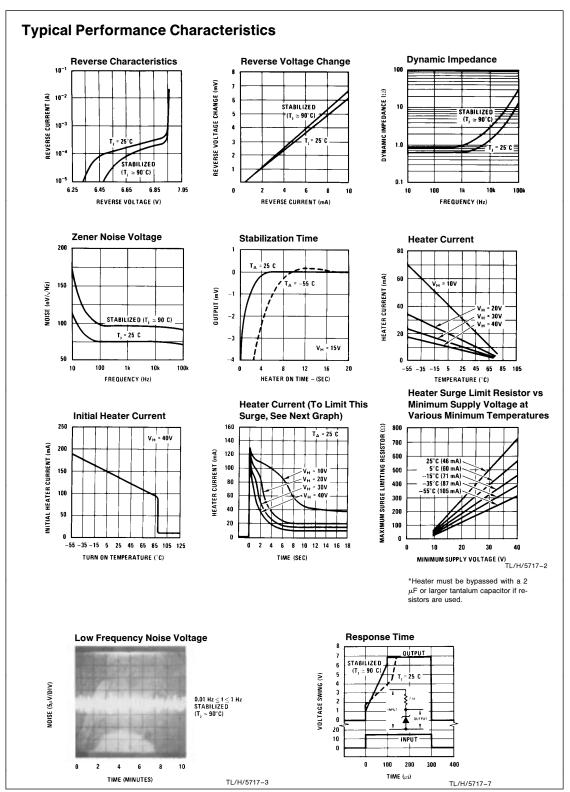
The National Semiconductor LM199AH-20, LM299AH-20, and LM399AH-50 are ultra-stable Zener references specially selected from the production runs of LM199AH, LM299AH, LM399AH and tested to confirm a long-term stability of 20, 20, or 50 ppm per 1000 hours, respectively. The devices are measured every 168 hours and the voltage of each device is logged and compared in such a way as to show the deviation from its initial value. Each measurement is taken with a probable-worst-case deviation of ± 2 ppm, compared to the Reference Voltage, which is derived from several groups of NBS-traceable references such as LM199AH-20's, 1N827's, and saturated standard cells, so

that the deviation of any one group will not cause false indications. Indeed, this comparison process has recently been automated using a specially prepared computer program which is custom-designed to reject noisy data (and require a repeat reading) and to record the average of the best 5 of 7 readings, just as a sagacious standards engineer will reject unbelievable readings.

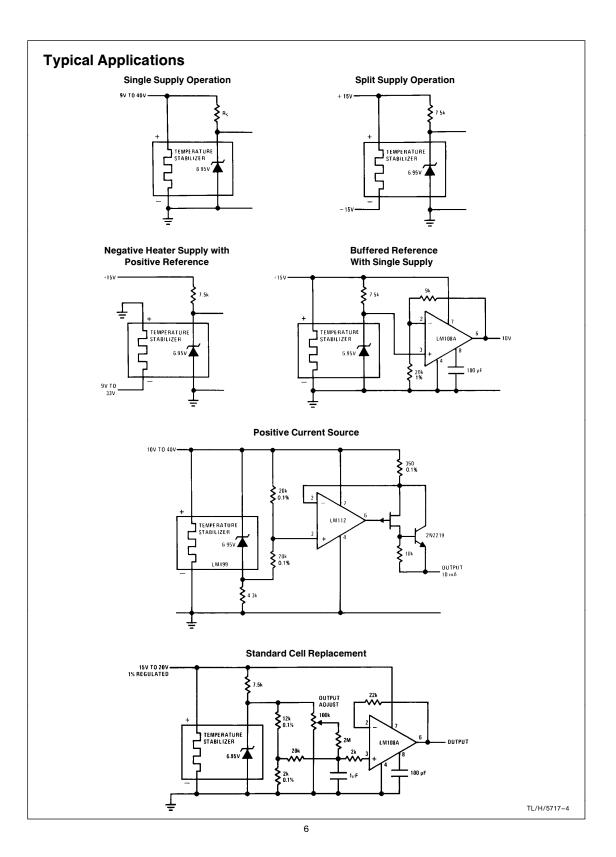
The typical characteristic for the LM199AH-20 is shown below. This computerized print-out form of each reference's stability is shipped with the unit.

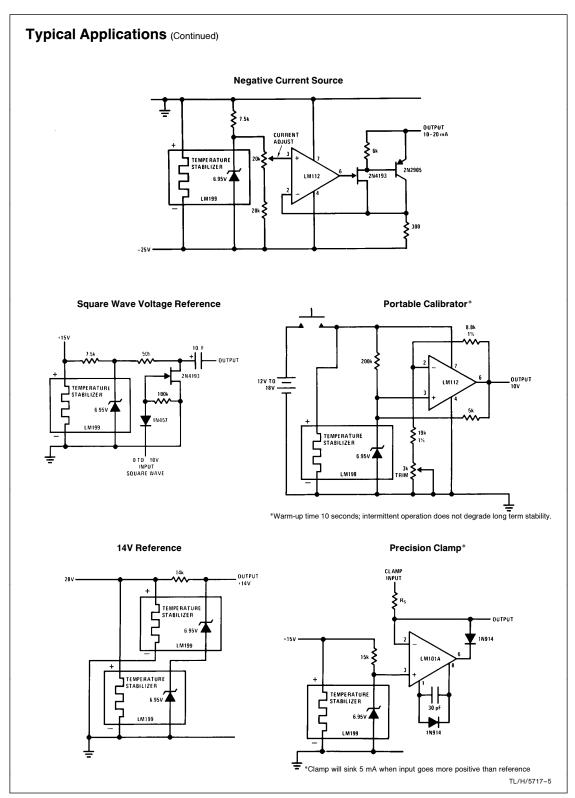

Typical Characteristics

National Semiconductor

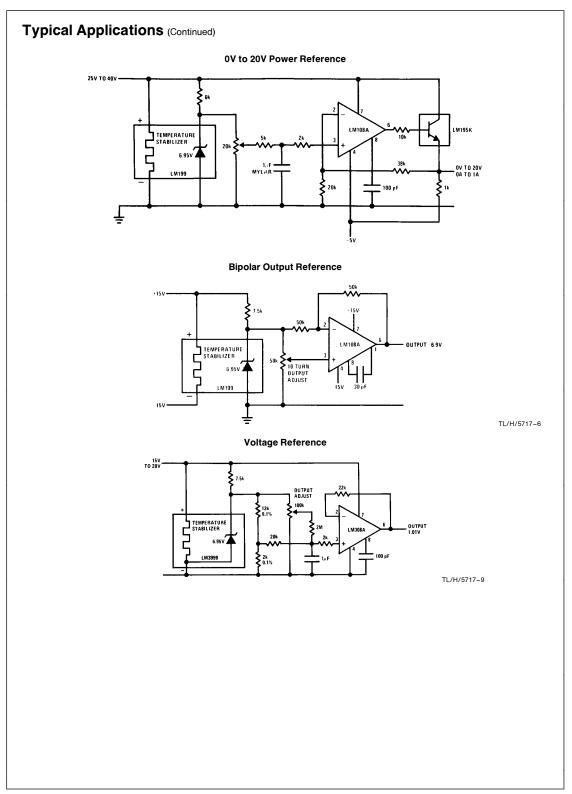

Certified Long Term Drift						
Hrs	Drift	LM199AH-20 Part #6849	D			
168 336	-20 -24	Limits	49	R I F		
504	-36		140 μV 140 μV	۲ Vu		
672 840	-34 -40	LM399AH-20	350 μV			
1008	-36					

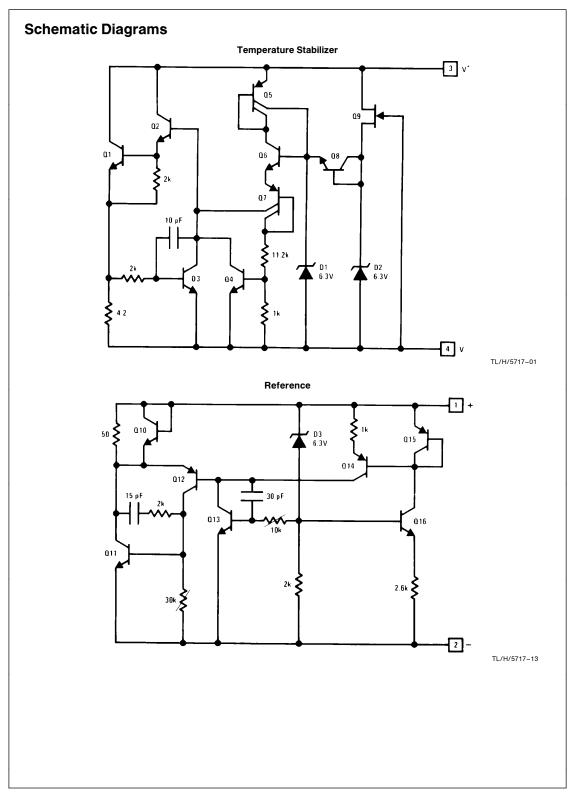
Testing Conditions

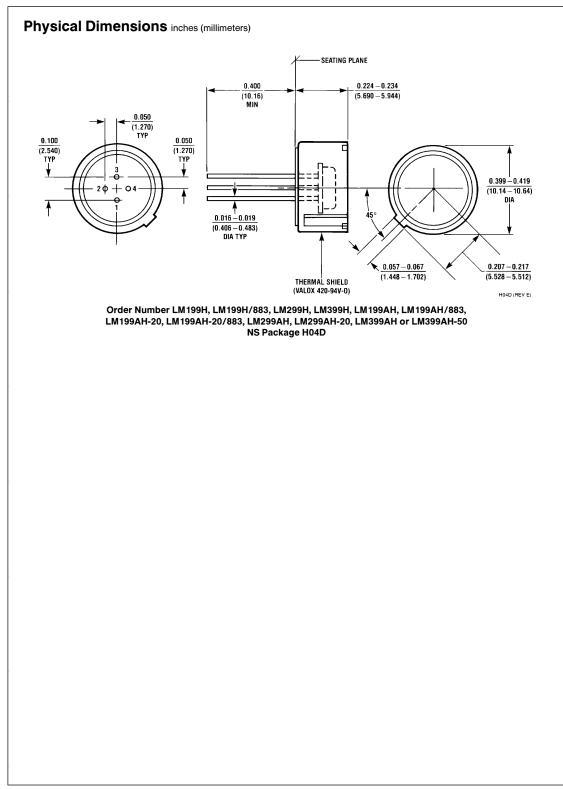

Heater Voltage	30V
Zener Current	1 mA
Ambient Temp.	25°C

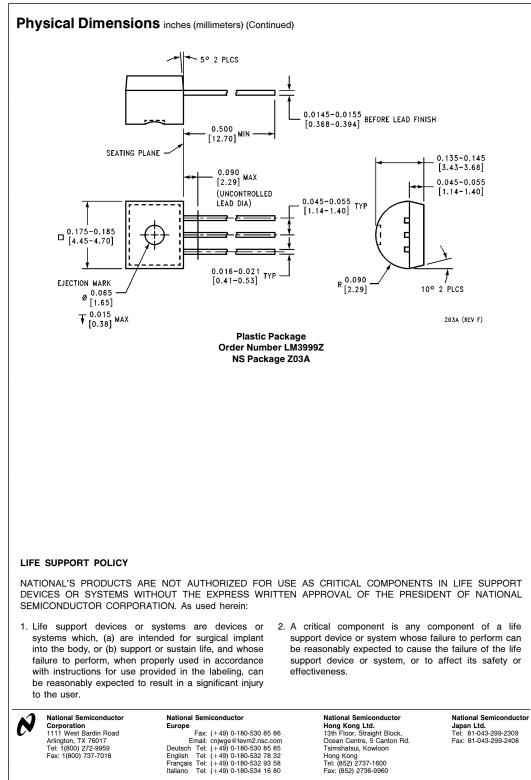


TL/H/5717-12









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.