创芯微电子有限公司

CX7461

Silicon Core Microelectronics Corp.

红外遥控发射电路

CX7461 是采用 CMOS 工艺制造的,专为红外 遥控应用而设计的一块专用发射电路,它可以拥有 32 个按键和 3 个双重按键, 能提供 13 位的用户编码。CX7461 的封装形式为 24 引线塑料扁平 封装 SOP-24。

SOP-24

w.DataSheet4U.com

主要特点:

- ◆ CMOS 工艺制造
- ◆ 低功耗
- ◆ 32+3 功能按键
- ◆ 最少的外围元件
- ◆ 较宽的工作电压范围
- ◆ 双重按键功能 (不分先后次序)
- ◆ 通过外接陶瓷谐振器可方便地构成片上振荡器
- ◆ 可在外部进行 64 种用户编码

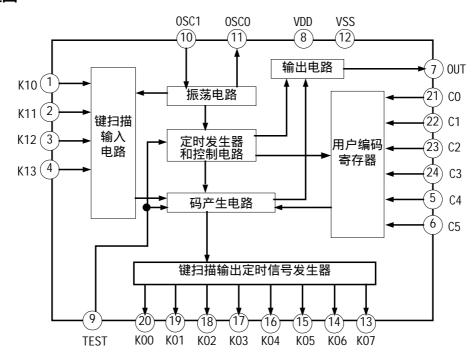
应用领域:

产品规格

- ◆ 电视机、录像机
- ◆ DVD、VCD 播放机
- ◆ 音频设备
- ◆ 空调

产品名称	封装形式
CX7461	SOP-24-375-1.27

产品规格分类


型 号	封装形式	掩膜 ROM 中的用户码
CX7461-100	SOP-24	C6 ~ C12=1000000
CX7461-101	SOP-24	C6 ~ C12=0000000
CX7461-103	SOP-24	C6 ~ C12=0010000
CX7461-104	SOP-24	C6 ~ C12=1010000

管脚排列

(24) C3 KIO (1) (23) C2 KI1 (2) KI2 (3) CO KI3 (4) 20 _{K00} C4 (5) (19) K01 (6) C5 CX7461 18) K02 OUT (7) ①7 K03 VDD (8) 16 K04 TEST(9) (15) K05 OSCI (10) 14 K06 0SC0(11) (13) K07 Vss (12)

w DataSheet4LL com

内部框图

极限参数(除非特别说明, Tamb=25)

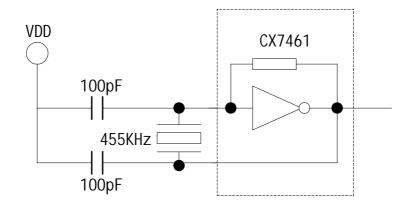
参数	符号	测试条件	参数范围	单位
最大电源电	VDD(max)	VDD	Vss-0.3 ~ 10	V
压				
输入电压	VIN	每个输入管脚	VSS-0.3 ~ VDD+0.3	V
输出电压	Vout	1	VSS-0.3 ~ VDD+0.3	V
输出电流	IOUT	-	-35	mA
最大允许功	Pd(max)	Ta<=85	150	mW
耗				
贮存温度	Tstg	1	-40 ~ +125	
工作温度	Topr		-10 ~ +70	

电气参数 (除非特别说明, VDD=3.0V, Tamb=25)

参数	符号	测试条件	最小值	典型值	最大值	单位
工作电源电流	IDD	键按下,输出无负载			1	mA
静态电源电流	IDS	没有键按下,振荡器停振			1	μA
高电平输出电流	ІОН1	VDD=1.8V,VOH=1.0V		-8		mA
	ІОН2	VDD=3.0V,VOH=2.0V		-25		mA
高电平输出电压	VOH	IOH=1mA	2.4			V
低电平输出电压	Vol	IOL=1mA			0.2	V
输出关断状态	IOFF				1	μA
漏电流						
用户编码高电平输	IIH	VIN=VDD			1	μA
入电流						
用户编码低电平输	IIL	VIN=VSS	-1			μA
入电流						
输入浮动电压	VIF			0.1VD		V
				D		
输入下拉电阻	RIN		75	100	125	k

推荐工作条件(除非特别说明, Tamb=25)

参数	符号	最小值	典型值	最大值	单位
电源电压	VDD	2.0	3.0	3.3	V
高电平输入电压	VIH	0.7Vdd		VDD	V
低电平输入电压	VIL	Vss		0.3VDD	V
振荡频率	fosc	400	455	500	KHz


管脚说明

管脚号	符号	输入/输出	功能描述
1 ~ 4	K10 ~ K13	I	按键输入管脚
7	OUT	О	发射信号输出管脚
8	VDD		电源正端
9	TEST	I	电路测试管脚。通常置高或悬空
10	OSC1	I	振荡器输入管脚
11	OSC0	О	振荡器输出管脚
12	Vss		电源负端(接地)
13 ~ 20	KO7 ~ KO0	О	键扫描定时信号输出端
21 ~ 14	C0 ~ C3		用户编码输入管脚。可对 13 位用户编码中
5,6	C4 ~ C5	I	的 6 位进行外部设置

功能说明

1. 振荡电路

用 CMOS 反相器构成自偏型的放大器,通过外接陶瓷谐振器便可构成振荡回路。请参考图 1 的振荡器框图。

v DataSheet4U com

图 1.振荡电路框图

除非有键按下,振荡器平时是停振的,这样可大幅度地降低功耗。

2.按键输入

通过四个按键输入端 $K10 \sim K13$ 和八个定时信号输出端的组合,一共可设置 32 个按键,只有 20#按键与挂在 KO5 线上的按键(即 21#、22#和 23#键)组合方能构成双重按键功能。这样,只有下列的按键组合才能构成双重按键操作。

- 1)20#键与21#键
- 2) 20#键与 22#键
- 3) 20#键与 23#键

双重按键没有优先顺序之分,这表示指定用来做双重操作的键可不分先后次序地按下,当这样两个键同时按下时,会输出一串编码脉冲。而将不能用来做双重操作的键按下时,不会有任何输出产生。

按键矩阵如下图所示:

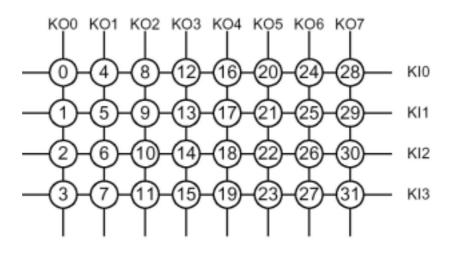


图 2.键盘矩阵

3.双重按键操作

双重按键功能对于磁带录音座的录音功能是很有用的。下表给出了相应的双重按键的数据码。

按键号	DO	D1	D2	D3	D4	D5	D6	D7
K20+K21	1	0	1	0	1	1	0	0
K20+K22	0	1	1	0	1	1	0	0
K20+K23	1	1	1	0	1	1	0	0

注:键数据位 D6 和 D7 可在芯片制造时用掩膜预置为 "0"或 "1"。

当有任何双重按键操作时:(20#键与21#键,20#键与22#键或20#键与23#键)

- 1. D5 被置为 1;
- 2. 不分先后次序。

vw.DataSheet4U.com

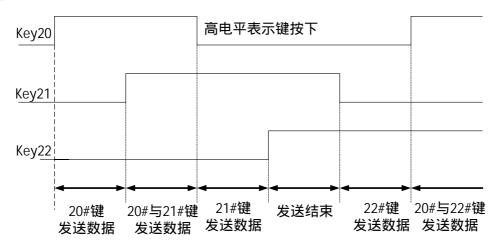


图 3.发送数据框图

3. 数据格式

CX7461 的一帧数据中含有 42 位,即 13 位用户编码($CO \sim C12$)和 8 位键数据码($D0 \sim D7$)以及它们相应的反码,请参考下图。

图 4.CX7461 数据格式

用户编码

用户编码一共有 13 位,称为 $C0 \sim C12$, $C6 \sim C12$ 这七位是由芯片内掩膜 ROM 中的数据决定的, $C0 \sim C5$ 这六位则是由外部管脚可设置的。CX7461 无需任何二极管而可由外部管脚设置出 64 种用户码。请参考下图。

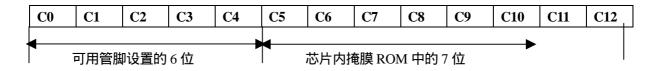


图 5.CX7461 的用户码

实例,给定下图的管脚设置:

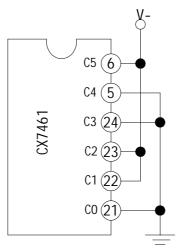


图 6.用户编码的设置实例

用户码 C0~C5 将分别取下列值, C0=0, C1=1, C2=1, C3=0, C4=0, C5=1。

键数据码

键数据码有8位,与按键的对应如下表。D6和D7可在芯片制造时,用掩膜预置为"0"或"1"。

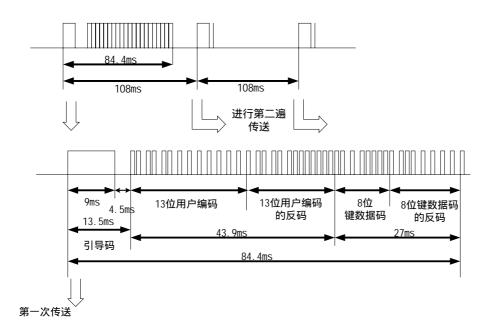
按键号	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0
5	1	0	1	0	0	0	0	0
6	0	1	1	0	0	0	0	0
7	1	1	1	0	0	0	0	0
8	0	0	0	1	0	0	0	0
9	1	0	0	1	0	0	0	0
10	0	1	0	1	0	0	0	0
11	1	1	0	1	0	0	0	0
12	0	0	1	1	0	0	0	0
13	1	0	1	1	0	0	0	0
14	0	1	1	1	0	0	0	0
15	1	1	1	1	0	0	0	0
16	0	0	0	0	1	0	0	0
17	1	0	0	0	1	0	0	0
18	0	1	0	0	1	0	0	0
19	1	1	0	0	1	0	0	0
20	0	0	1	0	1	0	0	0
21	1	0	1	0	1	0	0	0
22	0	1	1	0	1	0	0	0
23	1	1	1	0	1	0	0	0
24	0	0	0	1	1	0	0	0

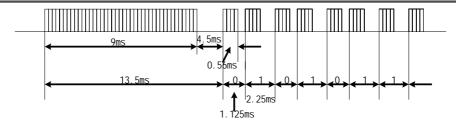
电参数规范 CX746								
按键号	D0	D1	D2	D3	D4	D5	D6	D7
25	1	0	0	1	1	0	0	0
26	0	1	0	1	1	0	0	0
27	1	1	0	1	1	0	0	0
28	0	0	1	1	1	0	0	0
29	1	0	1	1	1	0	0	0
30	0	1	1	1	1	0	0	0
31	1	1	1	1	1	0	0	0

ww DataSheet4U com

5.CX7461 码的发送

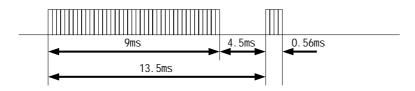
CX7461 所发送的码包含一引导码、13 位用户码和 8 位键数据码以及它们的反码。这样,很大程度上减少系统的误码率。请参考下图:




图 7.发射码的输出

引导码由 9ms 的载波和 4.5ms 的载波关断波形构成,以作为用户码、键数据码以及它们的反码的先导。这样,当接收是由系统微处理器构成时,接收、检测以及各种输出控制之间的时序关系就比较容易处理。"1"和"0"的区分取决于脉冲之间的时间,称之为脉冲位置调制方式(PPM)。

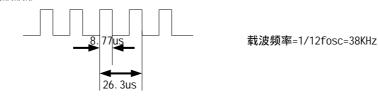
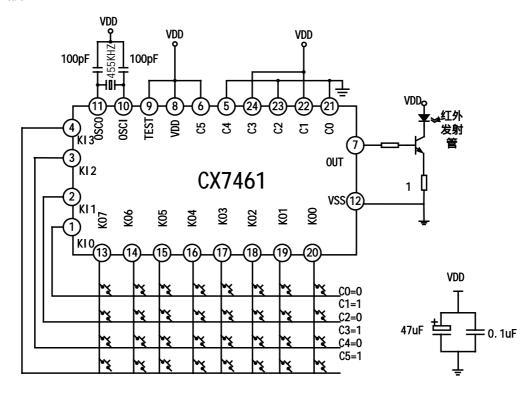
6.CX7461 的传送波形

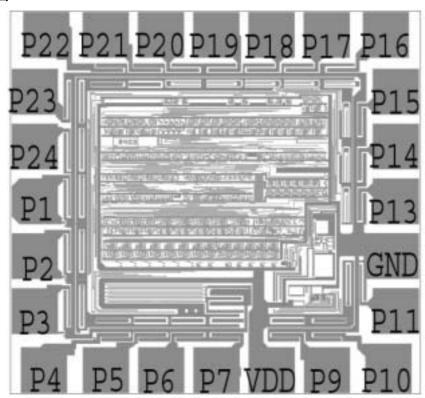

CX7461 的输出波形如下图所示:

第二次传送及连续的传送(按键需持续按下)

ww.DataSheet4U.com

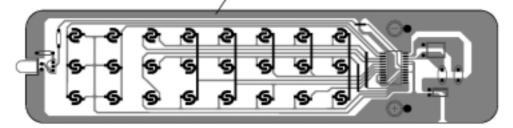
载波波形

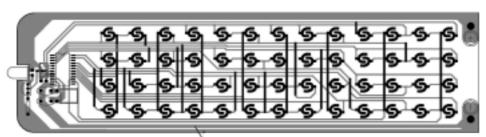




图 8.CX7461 的发射波形

应用图例

注:1.电源端的2个电容必须尽量靠近电路。 2.这2个电容与电源和地的连线尽量地短。 图9. CX7461应用图例


芯片总图

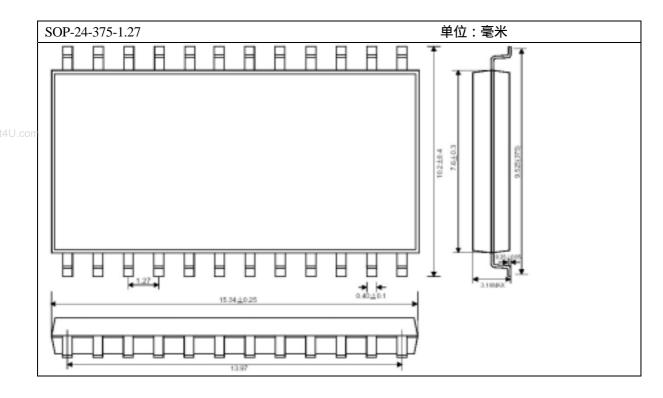


尺寸: 1.01x0.96 mm2

PCB 布线示意图

发射管输出地线

将发射成功管地线和 IC 地线分开或将地线加粗


以上图中所用 IC 仅用于示意,并非特指

遥控板布局注意事项:

- ◆ 注意在走线时,将电源滤波电容靠近IC
- ◆ 在电源走线时,应避免电源、地线走线过长
- ◆ 建议红外发射部分地线和 IC 地线应分开走线,或者将线加粗
- ◆ 三极管发射极要求至少接 1 电阻

◆ 建议三极管使用 9014

封装外形图

注:本资料仅供参考,如有更新,恕不另行通知。