www.ti.com ## SN54LVC373A, SN74LVC373A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCAS295S-JANUARY 1993-REVISED MAY 2005 #### **FEATURES** - Operate From 1.65 V to 3.6 V - Inputs Accept Voltages to 5.5 V - Max t_{pd} of 6.8 ns at 3.3 V - Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C - Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC}) - I_{off} Supports Partial-Power-Down Mode Operation - Latch-Up Performance Exceeds 250 mA Per JESD 17 - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) # SN54LVC373A . . . FK PACKAGE (TOP VIEW) #### DESCRIPTION/ORDERING INFORMATION The SN54LVC373A octal transparent D-type latch is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC373A octal transparent D-type latch is designed for 1.65-V to 3.6-V V_{CC} operation. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs. A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. These devices are fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SCAS295S-JANUARY 1993-REVISED MAY 2005 ## **DESCRIPTION/ORDERING INFORMATION (CONTINUED)** ### **ORDERING INFORMATION** | T _A | PACKAG | E ⁽¹⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|-----------------------|------------------|-----------------------|------------------| | | PDIP – N | Tube of 20 | SN74LVC373AN | SN74LVC373AN | | | QFN – RGY | Reel of 1000 | SN74LVC373ARGYR | LC373A | | | COIC DW | Tube of 25 | SN74LVC373ADW | 11/02724 | | | SOIC – DW | Reel of 2000 | SN74LVC373ADWR | LVC373A | | | SOP - NS | Reel of 2000 | SN74LVC373ANSR | LVC373A | | –40°C to 85°C | SSOP - DB | Reel of 2000 | SN74LVC373ADBR | LC373A | | | | Tube of 70 | SN74LVC373APW | | | | TSSOP - PW | Reel of 2000 | SN74LVC373APWR | LC373A | | | | Reel of 250 | SN74LVC373APWT | | | | TVSOP - DGV | Reel of 2000 | SN74LVC373ADGVR | LC373A | | | VFBGA – GQN | Dark of 4000 | SN74LVC373AGQNR | 1.00704 | | | VFBGA – ZQN (Pb-free) | Reel of 1000 | SN74LVC373AZQNR | - LC373A | | | CDIP – J | Tube of 20 | SNJ54LVC373AJ | SNJ54LVC373AJ | | -55°C to 125°C | CFP – W | Tube of 85 | SNJ54LVC373AW | SNJ54LVC373AW | | | LCCC – FK | Tube of 55 | SNJ54LVC373AFK | SNJ54LVC373AFK | (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. # GQN OR ZQN PACKAGE (TOP VIEW) #### **TERMINAL ASSIGNMENTS** | | 1 | 2 | 3 | 4 | |---|-----|----|-----------------|----| | Α | 1Q | ŌĒ | V _{CC} | 8Q | | В | 2D | 7D | 1D | 8D | | С | 3Q | 2Q | 6Q | 7Q | | D | 4D | 5D | 3D | 6D | | Е | GND | 4Q | LE | 5Q | # FUNCTION TABLE (EACH LATCH) | | INPUTS | OUTPUT | | |----|--------|--------|-------| | OE | LE | D | Q | | L | Н | Н | Н | | L | Н | L | L | | L | L | Χ | Q_0 | | Н | Χ | X | Z | ## **LOGIC DIAGRAM (POSITIVE LOGIC)** Pin numbers shown are for the DB, DGV, DW, FK, J, N, NS, PW, RGY, and W packages. ## Absolute Maximum Ratings⁽¹⁾ over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|---|--|------|-----------------------|------| | V_{CC} | Supply voltage range | | -0.5 | 6.5 | V | | V _I | Input voltage range ⁽²⁾ | | -0.5 | 6.5 | V | | Vo | Voltage range applied to any output in the h | Voltage range applied to any output in the high-impedance or power-off state (2) | | | | | Vo | Voltage range applied to any output in the h | nigh or low state (2)(3) | -0.5 | V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | V _I < 0 | | - 50 | mA | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | Io | Continuous output current | | | ±50 | mA | | | Continuous current through V _{CC} or GND | | | ±100 | mA | | | | DB package (4) | | 70 | °C/W | | | | DGV package ⁽⁴⁾ | | 92 | | | | | DW package ⁽⁴⁾ | | 58 | | | 0 | Dealer we the world in a dealer | GQN/ZQN package (4) | | 78 | | | θ_{JA} | Package thermal impedance | N package ⁽⁴⁾ | | 69
60 | | | | | NS package ⁽⁴⁾ | | | | | | | PW package ⁽⁴⁾ | | 83 | | | | | RGY package ⁽⁵⁾ | | 37 | | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table. ⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7. ⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-5. # SN54LVC373A, SN74LVC373A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCAS295S-JANUARY 1993-REVISED MAY 2005 # Recommended Operating Conditions⁽¹⁾ | | | | SN54LVC | 373A | SN74LVC3 | 73A | | | |-----------------|------------------------------------|--|---------|----------|------------------------|----------------------|------|--| | | | | MIN | MAX | MIN | MAX | UNIT | | | ., | Complexeditana | Operating | 2 | 3.6 | 1.65 | 3.6 | V | | | V_{CC} | Supply voltage | Data retention only | 1.5 | | 1.5 | | V | | | | | V _{CC} = 1.65 V to 1.95 V | | | 0.65 × V _{CC} | | | | | V_{IH} | High-level input voltage | V _{CC} = 2.3 V to 2.7 V | | | 1.7 | | V | | | | | V _{CC} = 2.7 V to 3.6 V | 2 | | 2 | | | | | | | V _{CC} = 1.65 V to 1.95 V | | | 0. | 35 × V _{CC} | | | | V_{IL} | Low-level input voltage | V _{CC} = 2.3 V to 2.7 V | | | | 0.7 | V | | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 0.8 | | 0.8 | | | | V _I | Input voltage | | 0 | 5.5 | 0 | 5.5 | V | | | 17 | Output voltage | High or low state | 0 | V_{CC} | 0 | V_{CC} | V | | | V _O | Output voltage | 3-state | 0 | 5.5 | 0 | 5.5 | V | | | | | V _{CC} = 1.65 V | | | | -4 | | | | | High lavial autout avenue | V _{CC} = 2.3 V | | | | -8 | A | | | I _{OH} | High-level output current | $V_{CC} = 2.7 \text{ V}$ | | -12 | | -12 | mA | | | | | V _{CC} = 3 V | | -24 | | -24 | | | | | | V _{CC} = 1.65 V | | | | 4 | | | | | Low lovel output ourrent | V _{CC} = 2.3 V | | | | 8 | A | | | l _{OL} | Low-level output current | V _{CC} = 2.7 V | | 12 | | 12 | mA | | | | | V _{CC} = 3 V | | 24 | | 24 | | | | Δt/Δν | Input transition rise or fall rate | | | 10 | | 10 | ns/V | | | T _A | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCAS295S-JANUARY 1993-REVISED MAY 2005 ### **Electrical Characteristics** over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | TEST CONDITIONS | 10 | V | SN54L | -VC373A | | SN74 | LVC373A | ١ | | |--|--|-----------|-----------------|-----------------------|--------------------|------|-----------------------|--------------------|------|------| | PARAMETER | TEST CONDITION | 15 | V _{cc} | MIN | TYP ⁽¹⁾ | MAX | MIN | TYP ⁽¹⁾ | MAX | UNIT | | | 100 1 | | 1.65 V to 3.6 V | | | | V _{CC} - 0.2 | | | | | V _{OH} | $I_{OH} = -100 \mu A$ | | 2.7 V to 3.6 V | V _{CC} - 0.2 | | | | | | | | | $I_{OH} = -4 \text{ mA}$ | | 1.65 V | | | | 1.2 | | | | | | I _{OH} = -8 mA | | 2.3 V | | | | 1.7 | | | V | | | 1 40 m A | | 2.7 V | 2.2 | | | 2.2 | | | | | | $I_{OH} = -12 \text{ mA}$ | | 3 V | 2.4 | | | 2.4 | | | | | | I _{OH} = -24 mA | 3 V | 2.2 | | | 2.2 | | | | | | | I _{OL} = 100 μA | | 1.65 V to 3.6 V | | | | | | 0.2 | | | | | | 2.7 V to 3.6 V | | | 0.2 | | | | | | | I _{OL} = 4 mA | | 1.65 V | | | | | | 0.45 | V | | V_{OL} | I _{OL} = 8 mA | | 2.3 V | | | | | | 0.7 | | | | I _{OL} = 12 mA | | 2.7 V | | | 0.4 | | | 0.4 | | | | I _{OL} = 24 mA | | 3 V | | | 0.55 | | | 0.55 | | | I _I | V _I = 0 to 5.5 V | | 3.6 V | | | ±5 | | | ±5 | μΑ | | I _{off} | V_I or $V_O = 5.5 \text{ V}$ | | 0 | | | | | | ±10 | μΑ | | I _{OZ} | V _O = 0 to 5.5 V | | 3.6 V | | | ±15 | | | ±10 | μΑ | | | $V_I = V_{CC}$ or GND | | 2.6.1/ | | | 10 | | | 10 | ^ | | I_{CC} $3.6 \text{ V} \le V_1 \le 5.5 \text{ V}^{(2)}$ $I_0 = 0$ | | $I_O = 0$ | 3.6 V | 10 | | 10 | | μΑ | | | | Δl _{CC} | One input at V _{CC} – 0.6 V,
Other inputs at V _{CC} or GN | ID | 2.7 V to 3.6 V | | | 500 | | | 500 | μΑ | | C _i | $V_I = V_{CC}$ or GND | | 3.3 V | | 4 | 12 | | 4 | | pF | | C _o | $V_O = V_{CC}$ or GND | | 3.3 V | | 5.5 | 12 | | 5.5 | | pF | All typical values are at V_{CC} = 3.3 V, T_{A} = 25°C. This applies in the disabled state only. ### **Timing Requirements** over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | SN54LVC373A
V _{CC} = 2.7 V | | C373A | | | |----------------|-----------------------------|--|-----|-------|-----|----| | | | | | UNIT | | | | | | MIN I | MAX | MIN | MAX | | | t_{w} | Pulse duration, LE high | 3.3 | | 3.3 | | ns | | t_{su} | Setup time, data before LE↓ | 2 | | 2 | | ns | | t _h | Hold time, data after LE↓ | 2 | | 2 | | ns | ### **Timing Requirements** over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | | SN74LVC373A | | | | | | | | |-----------------|-----------------------------|-------------------------|-------------|------------------------|--------------|-------------------|-------|------------------------------|--------------|------| | | | V _{CC} = ± 0.7 | | V _{CC} = ± 0. | 2.5 V
2 V | V _{CC} = | 2.7 V | V _{CC} = 3
± 0.3 | 3.3 V
3 V | UNIT | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _w | Pulse duration, LE high | (1) | | (1) | | 3.3 | | 3.3 | | ns | | t _{su} | Setup time, data before LE↓ | (1) | | (1) | | 2 | | 2 | | ns | | t _h | Hold time, data after LE↓ | (1) | | (1) | | 1.5 | | 1.5 | | ns | ⁽¹⁾ This information was not available at the time of publication. ## SN54LVC373A, SN74LVC373A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCAS295S-JANUARY 1993-REVISED MAY 2005 ## **Switching Characteristics** over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | | SN54L\ | | | | |------------------|-----------------|----------------|-------------------------|------------------------------------|-----|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 2.7 V | V _{CC} = 3.3 V
± 0.3 V | | UNIT | | | | | MIN MAX | MIN | MAX | | | + | D | Q | 8.5 | 1 | 7.5 | 20 | | ^l pd | LE | Q | 9.5 | 1 | 8.5 | ns | | t _{en} | ŌĒ | Q | 8.7 | 1 | 7.7 | ns | | t _{dis} | ŌĒ | Q | 8 | 0.5 | 7 | ns | ## **Switching Characteristics** over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | | SN74LVC373A | | | | | | | | | |--------------------|-----------------|----------------|-------------------------|-----|-------------------------|--------------|---------------------|-------|------------------------------|--------------|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = ± 0.1 | | V _{CC} = ± 0.2 | 2.5 V
2 V | V _{CC} = 2 | 2.7 V | V _{CC} = 3
± 0.3 | 3.3 V
3 V | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | D | | (1) | (1) | (1) | (1) | | 7.8 | 1.5 | 6.8 | 20 | | t _{pd} | LE | Q | (1) | (1) | (1) | (1) | | 8.2 | 2 | 7.6 | ns | | t _{en} | ŌĒ | Q | (1) | (1) | (1) | (1) | | 8.7 | 1.5 | 7.7 | ns | | t _{dis} | ŌĒ | Q | (1) | (1) | (1) | (1) | | 7.6 | 1.5 | 7 | ns | | t _{sk(o)} | | | | | | | | | | 1 | ns | ⁽¹⁾ This information was not available at the time of publication. ## **Operating Characteristics** $T_A = 25^{\circ}C$ | | PARAMETER | | TEST
CONDITIONS | V _{CC} = 1.8 V
TYP | V _{CC} = 2.5 V
TYP | V _{CC} = 3.3 V
TYP | UNIT | |-----|-------------------------------|------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|------| | | Power dissipation capacitance | Outputs enabled | f = 10 MHz | (1) | (1) | 46 | pF | | Cpd | per latch | Outputs disabled | 1 = 10 MHZ | (1) | (1) | 3 | ρг | ⁽¹⁾ This information was not available at the time of publication. #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | **LOAD CIRCUIT** | ., | INPUTS | | ., | ., | | | ., | | |--------------------|-----------------|--------------------------------|--------------------|-------------------|-------|--------------|---------------------------|---| | V _{CC} | VI | t _r /t _f | V _M | V _{LOAD} | CL | RL | $oldsymbol{V}_{\!\Delta}$ | | | 1.8 V \pm 0.15 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 1 k Ω | 0.15 V |] | | 2.5 V \pm 0.2 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 500 Ω | 0.15 V | | | 2.7 V | 2.7 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | | 3.3 V \pm 0.3 V | 2.7 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en}. - G. t_{PLH} and t_{PHL} are the same as t_{pd}. - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms ## **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |-------------------|-----------------------|----------------------------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | 5962-9757301Q2A | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | 5962-9757301QRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | 5962-9757301QSA | ACTIVE | CFP | W | 20 | 1 | TBD | A42 | N / A for Pkg Type | | SN74LVC373ADBLE | OBSOLETE | SSOP | DB | 20 | | TBD | Call TI | Call TI | | SN74LVC373ADBR | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ADBRE4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ADGVR | ACTIVE | TVSOP | DGV | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ADGVRE4 | ACTIVE | TVSOP | DGV | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ADW | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ADWR | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ADWRE4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373AGQNR | ACTIVE | BGA MI
CROSTA
R JUNI
OR | GQN | 20 | 1000 | TBD | SNPB | Level-1-240C-UNLIM | | SN74LVC373AN | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | SN74LVC373ANE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | SN74LVC373ANSR | ACTIVE | SO | NS | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ANSRE4 | ACTIVE | SO | NS | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APW | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWE4 | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWG4 | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWLE | OBSOLETE | TSSOP | PW | 20 | | TBD | Call TI | Call TI | | SN74LVC373APWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWRE4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWRG4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWT | ACTIVE | TSSOP | PW | 20 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373APWTE4 | ACTIVE | TSSOP | PW | 20 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LVC373ARGYR | ACTIVE | QFN | RGY | 20 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-2-260C-1YEAR | ### PACKAGE OPTION ADDENDUM 2-Nov-2006 | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |-------------------|-----------------------|----------------------------------|--------------------|------|----------------|----------------------------|------------------|------------------------------| | SN74LVC373ARGYRG4 | ACTIVE | QFN | RGY | 20 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-2-260C-1YEAR | | SN74LVC373AZQNR | ACTIVE | BGA MI
CROSTA
R JUNI
OR | ZQN | 20 | 1000 | Green (RoHS &
no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | | SNJ54LVC373AFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | SNJ54LVC373AJ | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | SNJ54LVC373AW | ACTIVE | CFP | W | 20 | 1 | TBD | A42 | N / A for Pkg Type | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. # W (R-GDFP-F20) # CERAMIC DUAL FLATPACK - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only. - E. Falls within Mil-Std 1835 GDFP2-F20 ### FK (S-CQCC-N**) #### **28 TERMINAL SHOWN** ### **LEADLESS CERAMIC CHIP CARRIER** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a metal lid. - D. The terminals are gold plated. - E. Falls within JEDEC MS-004 # GQN (R-PBGA-N20) # PLASTIC BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Falls within JEDEC MO-225 variation BC. - D. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free. # ZQN (R-PBGA-N20) # PLASTIC BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Falls within JEDEC MO-225 variation BC. - D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb). # N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ## DGV (R-PDSO-G**) ### 24 PINS SHOWN #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 # DW (R-PDSO-G20) # PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-Lead) package configuration. - The package thermal pad must be soldered to the board for thermal and mechanical performance. - Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature. - F. Package complies to JEDEC MO-241 variation BC. ### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Bottom View NOTE: All linear dimensions are in millimeters Exposed Thermal Pad Dimensions # RGY (R-PQFP-N20) - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. ## **MECHANICAL DATA** ## NS (R-PDSO-G**) # 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ## DB (R-PDSO-G**) ## PLASTIC SMALL-OUTLINE ### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 ## PW (R-PDSO-G**) ### 14 PINS SHOWN ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |--------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | Low Power Wireless | www.ti.com/lpw | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265