SVA-NEC Confidential

SN-产-F-07-B-161

1/33

Shanghai SVA - NEC Liquid Crystal Display Co., Ltd.

TFT COLOR LCD MODULE

(COMMON)

SVA190WX1-05TB

48cm (19.0W Type)

WXGA+

LVDS Interface (2port)

(Tentative Version)

Published by

Product Management Department

SVA - NEC Liquid Crystal Display Co., Ltd.

Approved by

Date

Let Ing Chen >07/11/6

Checked by

Date

Sylvan3how 3001/11/6

Prepared by

Date

Air Jore frong 2007/11/6

Signature of customer

Confirmed by Date

2/33

SN-产-F-07-B-161

INTRODUCTION

WARRANTY

Shanghai **SVA NEC** Liquid Crystal Display Co., Ltd. (hereinafter called "SVA-NEC") warrants that this product meets the product specifications set forth in this document. If this product under normal operation is found to be non-conforming to the product specifications, and such non-conformance is promptly notified to SVA-NEC within one (1) year after the delivery date, and further such non-conformance is solely attributable to SVA-NEC, SVA-NEC shall repair the non-conforming product or replace it with a conforming one, free of charge. However, this warranty does not apply to any non-conformance that can be found easily by incoming inspections or those resulting from any one of the following:

- 1) Unauthorized or improper repair, maintenance or modification
- 2) Operation or use against specifications, instructions or warnings given by SVA-NEC
- 3) Any other causes attributable to customer

In case SVA-NEC repairs or replaces a product after the one (l)-year warranty period, SVA-NEC shall be entitled to charge for such repair or replacement. Those replaced parts shall be covered with six (6)-month warranty period from the replacement day. Non-conforming products may be replaced with substitutes instead of repair when the manufacture of this product has been terminated.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, SVA-NEC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND DISCLAIMS ANY REMEDIES.

MAINTENANCE

The specifications of maintenance parts may be partially changed within equivalent quality or better. In this product, SVA-NEC will not accept to maintain for only mounting parts on circuit board (e.g. connector, fuse, capacitor, resistor, etc.) and only backlight conformation parts (e.g. reflector sheet, light guide plate, etc.).

If SVA-NEC is planning discontinuation for this product, SVA-NEC shall inform it to customers in six (6)-months advance from the issued date of official agreements. In addition, after product discontinuation, SVA-NEC may replace substitutes instead of maintenance parts with whole product.

• CHANGE CONTROL

For the purpose of product improvement, this product design may be changed for specifications, appearance, parts, circuits and so on. In case a design change is affected on the product specifications, SVA-NEC shall inform it to customers in advance.

HANDLING OF DOUBTFUL POINTS

Any question arising out of, or in connection with, this SPECIFICATION or any matter not stipulated herein will be settled each time upon consultation between both parties.

SN-产-F-07-B-161

3/33

CONTENTS

INTRODUCTION	2
CONTENTS	3
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	4
1.2 APPLICATIONS	4
1.3 FEATURES	4
2. GENERAL INFORMATION	5
3. BLOCK DIAGRAM	6
4. DETAILED SPECIFICATION	7
4.1 MECHANICAL SPECIFICATIONS	7
4.2 ABSOLUTE MAXIMUM RATINGS	7
4.3 ELECTRICAL CHARACTERISTICS	8
4.4 POWER SUPPLY VOLTAGE SEQUENCE AND RIPPLE	9
4.5 INTERFACE AND CONNECTOR PIN ALIGNMENT	
4.6 LVDS I/F DATA CHART	14
4.7 DISPLAY COLORS AND INPUT DATA SIGNALS	16
4.8 INTERFACE TIMING	17
4.9 OPTICS	20
5. RELIABILITY TESTS	23
6. ESTIMATED LUMINANCE LIFETIME	24
7. MARKINGS	25
7.1 PRODUCT LABEL	25
7.2 BARCODE LABEL	25
7.3 OTHER MARKINGS	25
7.4 INDICATION LOCATIONS	26
8. PACKING, TRANSPORTATION AND DELIVERY	27
8.1 PACKING	27
8.2 INSPECTION RECORD SHEET	27
8.3 TRANSPORTATION	27
8.4 SIZE AND WEIGHT FOR PACKING BOX	27
8.5 OUTLINE FIGURE FOR PACKING	28
9.PRECAUTIONS	30
9.1 MEANING OF CUTION SIGNS	30
9.2 CAUTIONS	30
9.3 ATTENTIONS	30
10. OUTDRAWING	32
10.1 FRONT VIEW	32
10.2 REAR VIEW	33

SN-テ̄-F-07-B-161	4/33

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

SVA190WX1-05TB module is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

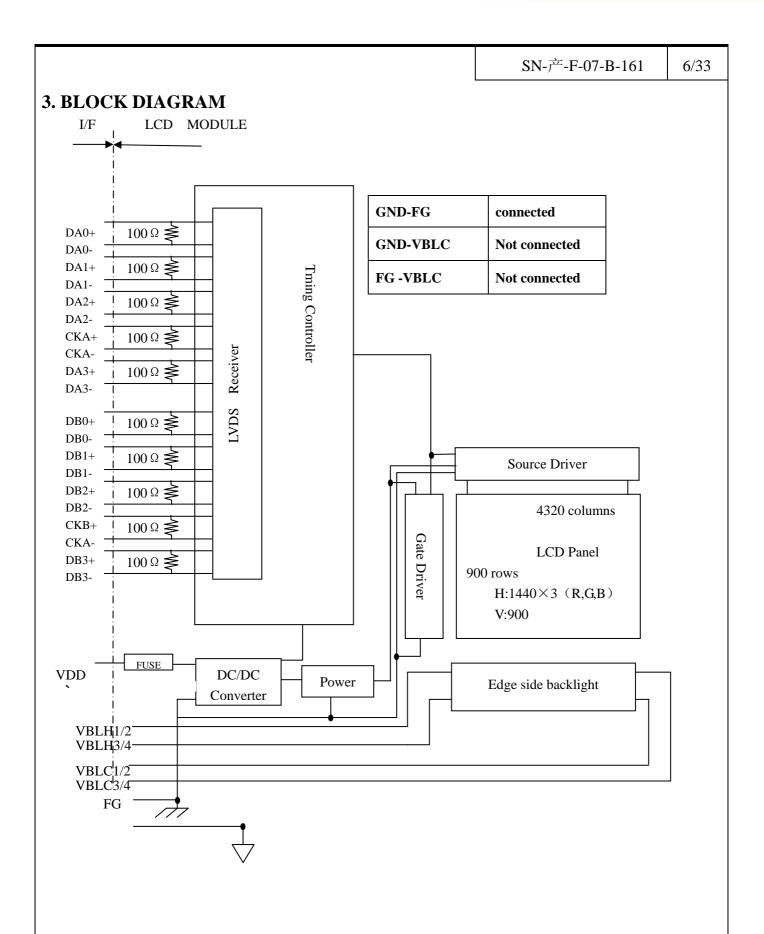
The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. PC, signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATIONS

• Monitor for PC


1.3 FEATURES

- a-Si TFT active matrix
- LVDS interface
- R.G.B input 8bit, 16.77 millions colors (6bit+Hi-FRC)
- Resolution WXGA+:(1,440×900 pixels)
- Wide viewing angle: $85^{\circ}/85^{\circ}(L/R)$; $80^{\circ}/80^{\circ}$ (U/D)
- High contrast ratio: 1000:1
- Module size: 428.0(H) ×278.0(V) ×16.5 (D)mm
- High response time (Ton+Toff=5 ms)
- High gamut: (against NTSC 72%typ.)
- Edge light type backlight (4 CCFL lamps)
- Inverter less

SN-デ-F-07-B-161 5/33	SN-戸-F-07-B-161	5/33
----------------------	-----------------	------

2. GENERAL INFORMATION

Display area	408.24 (H) x 255.15 (V)mm (typ.), [48.0 cm (19.0 inches)]			
Drive system	a-Si TFT active matrix			
Display color	16.77M colors (6bit+Hi-FRC)			
Pixel	1,440 (H) x 900(V) pixels			
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe			
Pixel pitch	0.2835 (W) x 0.2835 (H) mm			
Module size	428.0 ± 0.5 (H) ×278.0 ± 0.5 (V) ×16.5(D)mm			
Weight	2500g (typ.)			
Contrast ratio	1000:1(typ.)			
Viewing angle	• Horizontal:85°/85°(L/R);			
(At the contrast ratio 10: 1)	• Vertical: 80°/80° (U/D)			
Designed viewing direction	• Viewing angle with optimum grayscale (γ=2.2): normal axis			
Color gamut	At LCD panel center			
Color gamut	72 % (typ.) [against NTSC color space]			
Response time	Ton (white 90% → black 10%) + Toff (black 10% → white			
	90%) 5 ms (typ.)			
Luminance	At IBL = 6.5mArms / lamp			
	300cd/m ² (typ.)			
Signal system	LVDS 2port			
Signal system	[RGB :8-bit, Dot clock (CLK), Data enable (DE)]			
Power supply voltage	LCD panel signal processing board: 5.0V			
D 11:14	Edge light type: 4 cold cathode			
Backlight	fluorescent lamps (Inverter less)			
	At IBL=6.5mArms / lamp and checkered flag pattern			
Power consumption	20 W (typ.)			

Note: System ground(GND), FG (Frame ground) in the product should be connected together in customer equipment.

SN-产-F-07-B-161 7/33

4. DETAILED SPECIFICATION

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification	Unit		
Module size	$428.0 \pm 0.5 \text{ (W)} \times 278.0 \pm 0.5 \text{ (H)} \times 16.5 \text{ (D)}$	mm		
Display area	408.24(H) x 255.15 (V) mm (typ.), [48.0 cm (19.0 inches)]	mm		
Display dot number	1440×3(H) ×900(V)			
Pixel pitch	0.2835(H)×0.2835(V)			
Dot pitch	0.0945(H) ×0.2835(V)			
Color arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe	-		
Display color	16,777,216(6bit+Hi FRC)			
Weight	2500 (typ.)			

4.2 ABSOLUTE MAXIMUM RATINGS

Parameter		Parameter		Rating	Unit	Remarks		
Power supply	Power voltage		Power voltage		VDD	-0.3 ~+6.0	V	Ta = 25°C
voltage	Lam	p voltage	VBLH	666~814	Vrms	Ta = 25°C		
L	Lamp current		IBL	3.0~8.0	mArms	Ta = 25°C,for each lamp		
Lamp Os	scillation f	requency	FO	30~80	kHz	$Ta = 25^{\circ}C$		
Input v	oltage for	signals	VI	-0.3~3.3	V	$Ta = 25^{\circ}C$ Note1		
Stora	age temper	rature	Tst	-20 ~ +60	°C	-		
Front surface		Pront surface Front surface		0 ~ +50	°C	Note2		
Operating ten	прегаците	Rear surface	TopR	0 ~TBD	°C	Note3		
Polotivo	ive humidity Note/		Relative humidity Note4		RH	≤95	%	Ta ≤40° C
Relative numidity Note4		KII	€85	70	40° C < Ta≤50° C			
Absolute humidity Note4		AH	€70 Note5	g/m3	Ta > 50° C			
Operating altitude		-	≤4,850	m	0° C≤Ta≤55° C			
Sto	orage altitu	ude	-	≤13,600	m	-20° C≤Ta≤60° C		

 $Note 1: \ Display \ signals \ are \ DA0+/-, \ DA1+/-, \ DA2+/-, \ DA3+/-, \ CKA+/-, \ DB0+/-, \ DB1+/-, \ DB2+/-, \ DB1+/-, \ DB1+/-,$

DB3+/-,and CKB+/-.

Note2: Measured at center of LCD panel surface (including self-heat)

Note3: Measured at center of LCD module's rear shield surface (including self-heat)

Note4: No condensation Note5: Ta = 50°C, RH = 85%

SN-, → F-07-B-161 8/33

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 Driving for LCD panel signal processing board

 $(Ta=25^{\circ}C)$

Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltag	e	VDD	4.5	5.0	5.5	V	-
Power supply currer	Power supply current		-	800 Note1	950 Note2	mA	at VDD = 5.0V
Permissible ripple volt	age	VRP	-	-	150	mV	VDD
Differential input threshold	Low	VTL	-100	-	-	mV	at VCM =
voltage for LVDS receiver	High	VTH	-	-	+100	mV	1.2V Note3
Input voltage width for LVDS receiver		VI	0	-	3.3	V	-
Terminal resistor		RT	-	100	-	Ω	-

Note1: Checked flag pattern (EIAJ ED-2522)

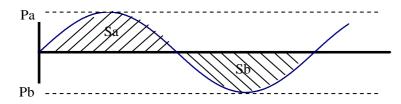
Note2: Pattern for maximum current (2H1V dot inverse, 0/15 scale)

Note3: Common mode voltage for LVDS driver

4.3.2 Driving for backlight lamp

(Ta=25°C) Note1

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Lamp voltage	VBLH	1	740	-	Vrms	Note2、Note3
Lamp current	IBL	3.0	6.5	8.0	mArms	Note3
		1314	-	-	Vrms	$Ta = 25 ^{\circ}C$ Note2 Note3
Lamp starting voltage (discharge stabilization voltage)	Vs	1512	-	-	Vrms	$Ta = 0 ^{\circ}C$ Note2 Note3
Lamp oscillation frequency	FO	30	50	80	kHz	Note4


Note1: The backlight of this product is made up of 4-piece lamp. The specification above is only for one lamp.

Note2: The voltage timing cycle of each lamp should be set as the same phase. [Vs] and [VBLH] is the voltage between the high port and low port, the value is the characteristic of lamp. The starting voltage of inverter should be higher than the value. The possibility of not lighting exists by the lower voltage, so the suitable voltage should considered by the test.

Note3: The asymmetric ratio of working waveform for lamps (Lamp voltage peak ratio, Lamp current peak ratio and waveform area ratio) should be less than 5% (See the following figure). If the waveform is asymmetric, DC (Direct current) element applies into the lamp. In this case, a lamp lifetime may be shortened, because a distribution of a lamp enclosure substance inclines toward one side between low voltage terminal (Cold terminal) and high voltage terminal (Hot terminal).

SN-产-F-07-B-161

9/33

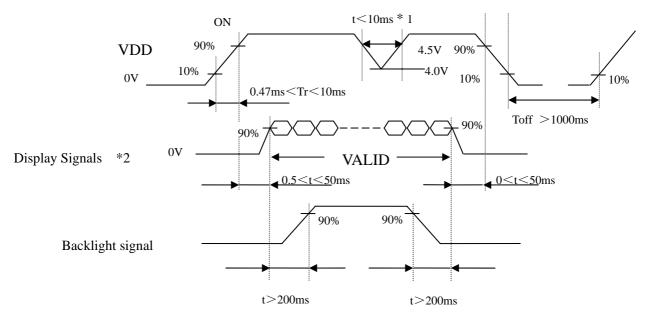
$$|Pa - Pb| / Pb \times 100 \le 5\%$$

 $|Sa - Sb| / Sb \times 100 \le 5\%$

Pa: Supply voltage/current peak for positive, Pb: Supply voltage/current peak for negative

Sa: Waveform space for positive part, Sb: Waveform space for negative part

Note4: In case "FO" is not the recommended value, beat noise may display on the screen, because of interference between "FO" and "1/th". Recommended value of "FO" is as following.


$$FO = 1/4 \times 1/th \times (2n-1)$$

Th: Horizontal signal period(See "4. 8.1 Timing characteristics".)

n: Natural number (1, 2, 3)

4.4 POWER SUPPLY VOLTAGE SEQUENCE AND RIPPLE

4.4.1 Power supply voltage sequence

- *1. When VDD is on, but the value is lower than 4.5V, a protection circuit may work, then the module may not display.
- *2 The signal line is not connected with the module, at the end of cable the terminal resistor of 100Ω should be added.

Note1: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CK+/-) must be "0" voltage, exclude the VALID period (See above sequence diagram). If these signals are higher than 0.3 V, the internal circuit is damaged.

If some of display signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If customer stops the display signals, they should cut

SN-产-F-07-B-161	10/33
-----------------	-------

VDD.

Note2: When VDD is on, it should be set above 4.0V.

Note3: The backlight power supply voltage should be inputted within the valid period of display and function signals, in order to avoid unstable data display.

4.4.2 Power supply voltage ripple

When the power supply is designed, the next form can give the reference. If the voltage ripple is over the value in next form, the noise should be seen in display area.

Ripple (Measured at input terminal of power supply)

	VDD(5V to drive the panel)
Ripple voltage	≤150mVP-P (Including spike noise)

4.4.3 Fuse

Parameter Type		Fuse		Dating	Fusing current	Damarlza
		Supplier	Rating F		Remarks	
VDI	D	F1206FA3000V032T	AEM	3A 32V	-	

Note1: There are different power supply systems from the power input terminal. The power supply capacity should be less than the fusing current. If the power supply capacity is above the fusing current, the fuse may blow in a short time, and then nasty smell, smoking and so on may occur.

12/33

SN-产-F-07-B-161

4.5 INTERFACE AND CONNECTOR PIN ALIGNMENT

CN1: FI-X30SSL-HF (Produced by JAE) or equivalent.

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	GND	Ground
26	NC	Not connection.
27	GND	Ground
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

SN-产-F-07-B-161 13/33

CN1: The inserting side is as follows

Printed wiring board

CN201: BHSR-02VS-1/Locking (J.S.T Mfg. Co., Ltd.)

Adaptable connector: SM02B-BHSS-1-TB (J.S.T. Mfg Co., Ltd.)

Pin No.	Signal name	Function
1	VH1	High voltage input terminal for upper lamp(Cable color: Blue)
2	VL1	Low voltage input terminal for upper lamp(Cable color: Black)

CN202: BHSR-02VS-1 /Locking(J.S.T Mfg. Co., Ltd.)

Adaptable connector: SM02B-BHSS-1-TB (J.S.T. Mfg Co., Ltd.)

Pin No.	Signal name	Function					
1 VH2		High voltage input terminal for upper lamp(Cable color: Pink)					
2 VL2		Low voltage input terminal for upper lamp(Cable color: White)					

CN203: BHSR-02VS-1/Locking (J.S.T Mfg. Co., Ltd.)

Adaptable connector: SM02B-BHSS-1-TB (J.S.T. Mfg Co., Ltd.)

Pin No.	Symbol name	Function
1	VH3	High voltage input terminal for lower lamp(Cable color: Blue)
2	VL3	Low voltage input terminal for lower lamp(Cable color: Black)

CN204: BHSR-02VS-1/Locking (J.S.T Mfg. Co., Ltd.)

Adaptable connector: SM02B-BHSS-1-TB (J.S.T. Mfg Co., Ltd.)

Pin No.	Symbol name	Function
1	VH4	High voltage input terminal for lower lamp(Cable color: Pink)
2	VL4	Low voltage input terminal for lower lamp(Cable color: White)

Note1: The ports of VDD and GND should be all used. As for the input of LVDS, please use the twisted pair wire of the transmission impedance 100Ω .

Note2: System ground (GND), FG (Frame ground) and VBLC (Lamp low voltage terminal) in the product should be connected together in customer equipment.

SN-产-F-07-B-161

14/33

4.6 LVDS I/F DATA CHART

				Transi	nitter			
Innut	DATA		pi n	DS90CF38				CNI
Input DATA			рш	equivalent				CNI
	RA0	\rightarrow	51	TXIN0			pin	Symbol
	RA1	\rightarrow	52	TXINI	TA1-	→	1	DA0-
	RA2	\rightarrow	54	TXIN2	TA1 +	→	2	DA0+
	RA3	\rightarrow	55	TXIN3				
	RA4 RA5	→	56	TXIN4	TB1-	-	4	DA1- DA1+
	GA0	→	3 4	TXIN6 TXIN7	TB1+	▎ᢇ	4	DAIT
	GA1	\rightarrow	6	TXIN8	TC1-	→	5	DA2-
als	GA2	\rightarrow	7	TXIN9	TC1+	→	6	DA2+
igi	GA3	\rightarrow	11	TXIN12			7	GND
l Si	GA4	\rightarrow	12	TXIN13	TCLK1-	→	8	CKA-
ıtro	GA5	\rightarrow	14	TXIN14	TCLK1+	→	9	CKA+
Ωχ	BA0	\rightarrow	15	TXIN15				
Эp	BA1	\rightarrow	19	TXIN18	TD1-	→	10	DA3-
an	BA2	\rightarrow	20	TXIN19	1'ST TD1+	→	11	DA3+
ata	BA3	→	22	TXIN20				
1 d	BA4 BA5	→	23 24	TXIN21 TXIN22				
ixe	RSVD	_	27	TXIN24				
Odd pixel data and control signals	RSVD	<i>→</i>	28	TXIN25				
Þζ	DE	→	30	TXIN26				
	RA6	→	50	TXIN27				
	RA7	\rightarrow	2	TXIN5				
	GA6	\rightarrow	8	TXIN10				
	GA7	\rightarrow	10	TXIN11				
	BA6	\rightarrow	16	TXIN16				
	BA7	\rightarrow	18	TXIN17				
	RSVD	\rightarrow	25	TXIN23				
	CLK	\rightarrow	31	CLKIN				
	RB0 RB1	→	51 52	TXIN0 TXIN1	TA2-		12	DB0-
	RB2		54	TXIN1	TA2+		13	DB0+
	RB3		55	TXIN3	III.		14	GND
	RB4	→	56	TXIN4	TB2-	→	15	DB1-
	RB5	→	3	TXIN6	TB2+	→	16	DB1+
	GB0	→	4	TXIN7			17	GND
	GB1	\rightarrow	6	TXIN8	TC2-	→	18	DB2-
	GB2	\rightarrow	7	TXIN9	TC2+	→	19	DB2+
	GB3	\rightarrow	11	TXIN12				
	GB4	\rightarrow	12	TXIN13	TCLK2-	→	20	CKB-
ata	GB5	→	14	TXIN14	TCLK2+	→	21	CKB+
l di	BB0 BB1	→	15 19	TXIN15 TXIN18	TD2-	_	22	DB3-
Even pixel data	BB1 BB2	<i>→</i>	20	TXIN16	2'nd TD2+	→	23	DB3+
ig 1	BB3	→	22	TXIN20	LIM ILIE.		24	GND
ver	BB4	→	23	TXIN21			25	GND
页	BB5	→	24	TXIN22			26	NC
	RSVD	\rightarrow	27	TXIN24			27	GND
	RSVD	\rightarrow	28	TXIN25			28	VDD
	RSVD	\rightarrow	30	TXIN26			29	VDD
	RB6	\rightarrow	50	TXIN27			30	VDD
	RB7	\rightarrow	2	TXIN5		l		
	GB6	\rightarrow	8	TXIN10				
	GB7	→	10	TXIN11				
	BB6 BB7	→	16 18	TXIN16 TXIN17				
	BB7 RSVD		25	TXIN17				
	CLK	<i>→</i>	31	CLKIN				
	CLIA	1	- 71	A-11-11-1		ı		

	SN-/ → -F-07-B-161	15/33
Note1: The lowest bit (RA0, GA0, BA0, RB0, GB0, BB0), the most	t upper bit (RA7, GA7, BA7, RB	7, GB7,
BB7) Note2:Connecting cable between LCD panel's connector and transm Note3: If only Hsync and Vsync, the product don't work. Make sure		ne.

SN-デ-F-07-B-161 16/33

4.7 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 scales. Also the relation between display colors and input data signals is as the following table.

D	isplay	Data	a sig	gnal	(0:	Lov	v lev	el 、	1:1	Higl	ı Le	vel)	ı												
	olors												GA4							BA5				BA1	
	Black	RB7	RB6 0	RB5 0	RB4 0	RB3	RB2 0	RB1	RB0 0	GB7 0	GB6	GB5 0	GB4 0	GB3 0	GB2 0	GB1 0	<u>GB0</u>	BB7 0	BB6 0	0	BB4 0	BB3 0	BB2 0	BB1 0	BB0 0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ı.	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
olo	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic color	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	Dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal	1				:								:								:				
Red scale	\downarrow				:								:								:				
×	Bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ale	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green scale	1				:								:								:				
ree	↓				:								:								:				
Ö	Bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ale	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Bule scale	<u> </u>				:								:								:				
Bul	↓		0	0	:	0	0	0	0		0	0	:	0	0	0	0	1	1	1	:			0	
•	Bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	D1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

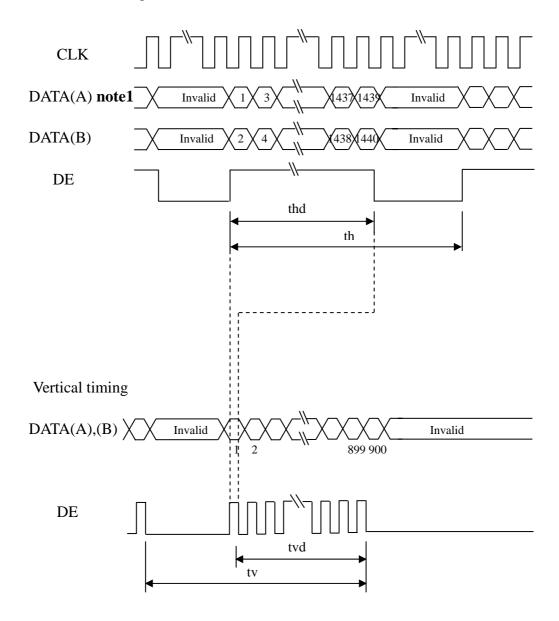
Note: Combination with 8 bit (256 grayscale) R,G,B color signal, the color can be formed.

SN-产-F-07-B-161 17/33

4.8 INTERFACE TIMING

4.8.1 Timing specification

]	Parameter		min.	typ.	max.	Unit	Remarks	
		1/tc	34.4	44.45	74.25	MHz	LVDS	
Clock	Frequency	tc	29.07	22.50	13.47	ns	transmitter input	
Clock	Rise time, Fall time	-		er to the tir	•	ns		
	Duty	-		teristics of transmitter	~	-	Note 1	
	Consta	th	14.8	18.0	26.5	μs	55 51-II-(+)	
Horizontal signals	Cycle	un	754	800	900	CLK	55.5kHz(typ.)	
signais	Display period	thd		720	CLK	-		
X7 4' 1	Cyrolo	4	13.3	16.67	20	ms	60 0Hz(true)	
Vertical signals	Cycle	tv	912	926	1100	Н	60.0Hz(typ.)	
signais	Display period	tvd		900		Н	-	
	Setup time	-	Refe	er to the tir	ns			
DE/Data	Hold time	-	charac	teristics of	ns	Note 1		
	Rise time, Fall time	-		transmitter	•	ns		


Note1: See the data sheet of LVDS transmitter.

Recommended transmitter:DS90CF383(National Semiconducter)

SN-デ-F-07-B-161 18/33

4.8.2 Input signal timing chart

Horizontal timing

Note 1: DATA(A)=RA0-RA7,GA0-GA7,BA0-BA7

DATA(B)=RB0-RB7,GB0-GB7,BB0-BB7

SN-产-F-07-B-161 19/33

4.8.3 Pixel DATA alignment of display image

The following chart is the coordinates of per pixel

Odd Pixel: RA= R DATA Even Pixel: RB=R DATA

GA= G DATA GB=G DATA

BA= B DATA BB=B DATA

D(1,1	.)		D(2,1)						
RA	GA	BA	RB	GB	BB				
			1						

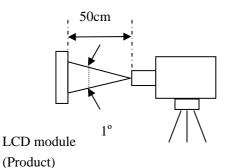
•	•	•	•••	•
•	•	•	•••	•
•	•	•	•••	•
D(1,3)	D(2,3)	D(3,3)	•••	D(1440,3)
D(1,2)	D(2,2)	D(3,2)	•••	D(1440,2)
D(1,1)	D(2,1)	D(3,1)	•••	D(1440,1)

SN-产-F-07-B-161 20/33

4.9 OPTICS

4.9.1 Optical characteristics

Note1, Note2


Parameter N	Note1	Condition	Symbol	min.	typ.	max.	Unit	Remarks	
Luminan	ice	White at center $\theta R=0^{\circ}$, $\theta L=0^{\circ}$, $\theta U=0^{\circ}$, $\theta D=0^{\circ}$	L	250	300	-	cd/ m ²	-	
Contrast r	atio	White/Black at center θR=0°, θL=0°, θU=0°, θD=0°	CR	TBD	1000	-	-	Note3	
Luminance un	iformity	White $\theta R=0^{\circ}, \theta L=0^{\circ}, \theta U=0^{\circ}, \theta D=0$	LU	-	1.25	1.33	-	Note4	
	White	X coordinate	Wx	0.283	0.313	0.343	-		
	Wille	Y coordinate	Wy	0.299	0.329	0.359	-		
	Red	X coordinate	Rx	0.621	0.6501	0.681	-		
Chromaticity		Y coordinate	Ry	0.303	0.333	0.363	-		
Cinomaticity	Green	X coordinate	Gx	0.267	0.297	0.327	-	Note5	
	Green	Y coordinate	Gy	0.572	0.602	0.632	-	1,0,00	
	Blue	X coordinate	Bx	0.112	0.142	0.172	-		
	Diue	Y coordinate	By	0.047	0.077	0.107	-		
Color gar	nut	θR=0°, θL=0°, θU=0°, θD=0 At center, against NTSC	С	70	72	-	%		
		White to black	Ton	-	1.3	TBD	ms	Note6	
Response	time	Black to white	Toff	1	3.7	TBD	ms	Note7	
		Ton+ Toff	-	1	5	TBD	ms	Note/	
	Right	θU=0°, θD=0°,CR=10	θR	TBD	85	-	0		
Viewing	Left	θU=0°, θD=0°,CR=10	θL	TBD	85	-	0	Note8	
angle	Up	θR=0°, θL=0°,CR=10	θU	TBD	80	1	° Notes		
	Down	θR=0°, θL=0°,CR=10	θD	TBD	80	-	0		

Note1: The values in upper table are only initial characteristics.

Note2: Measurement conditions are as follows.

 $Ta{=}25^{\circ}C$, $VDD{=}5.0V$, $IBL{=}6.5mArms/lamp$, $Display\ mode$: $WXGA{+}$, $Horizontal\ cycle{=}55.56KHz$, $Vertical\ cycle{=}60.0Hz$

Optical characteristics are measured at luminance saturation after 30minutes from working the product in the dark room. Also measurement method for luminance is as follows.

Luminance Meter (TOPCON BM-5A) Spectroradiometer(TOPCON SR-3)

SN-产-F-07-B-161 21/33

Note 3: See"4.9.2 Definition of contrast ratio".

Note 4: See"4.9.3 Definition of luminance uniformity".

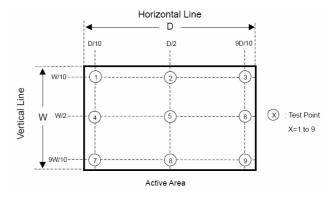
Note 5: CIE 1931 Chromaticity Diagram Standard.

Note 6: Product surface temperature: TopF = 33.0

Note 7: See "4.9.4 Definition of response time".

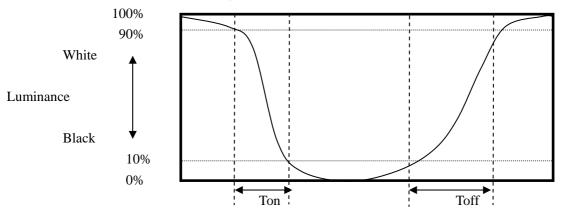
Note 8: See "4.9.5 Definition of viewing angle".

4.9.2 Definition of contrast ratio


The contrast ratio is calculated by using the following formula.

4.9.3 Definition of luminance uniformity

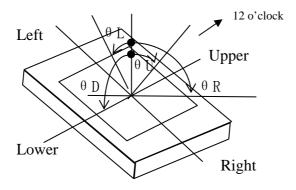
The luminance uniformity is calculated by using the following formula.


Luminance uniformity (LU) =
$$\frac{\text{Maximum luminance from to } 9}{\text{Minimum luminance from } 1 \text{ to } 9}$$

The luminance is measured at near the 9 points shown below.

4.9.4 Definition of response time

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90%. (See the following diagram.)

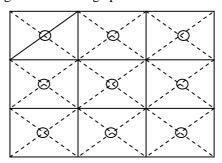


SN-产-F-07-B-161 22

22/33

4.9.5 Definition of viewing angle

Normal axis (Perpendicular)


SN-产-F-07-B-161 23/33

5. RELIABILITY TESTS

Test items		Condition						
High temperatur	e and	50±3 ,RH=80%,240hours						
humidity(Opera	tion)	Display data is black Note1						
Low temperat	ure	0±3240hours						
(Operation))	Display data is black						
		-20±330minutes						
Thermal sho	ck	60±330minutes						
(Non operation	on)	100cycles,1hour/cycle						
		Temperature transition time is within 5 minutes.						
		① $150\text{Pf},150\Omega,\pm 8\text{kV}$ (contact)						
ESD		$150\text{Pf},150\Omega,\pm15\text{kV}(\text{Air})$						
(operation)		② 9 places on a panel surface(contact)						
(operation)		13places on a panel surface(Air)						
		10 times each place at 1 sec interval Note2						
		10-200-10Hz, Sine wave, acceleration of						
Vibration		14.79m/s^2						
(Non operation	on)	30 minutes/cycle						
(14on operano)II)	X,Y,Z direction						
		1 time each direction						
Mechanical sh	ock	490 m/s^2 , 11 ms						
(Non operation		$\pm X$, $\pm Y$, $\pm Z$ direction						
(14on operano)II)	2 times each direction						
		53.3kPa (Equivalent to altitude 4,850m)						
	operation	$0 \pm 3 \dots 24$ hours						
Low pressure		50 ±324hours						
Low pressure		15kPa (Equivalent to altitude 13,600m)						
	non-operation	-20 ±324hours						
		60 ±3 24hours						

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

SN-产-F-07-B-161	24/33	
-----------------	-------	--

6. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

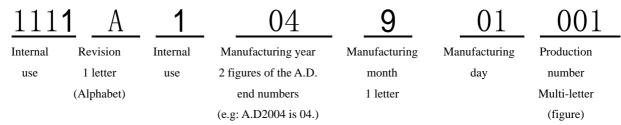
This lifetime is the estimated value, and is not guarantee value.

Condition	Luminance lifetime(MTTF) Note1	Unit
25 (Ambient temperature of the product) Continuous operation and IBL=6.5mArms/lamp	TBD	h

Note1: MTTF is mean time to half-luminance. In case the product works under low temperature environment, the lifetime becomes short.

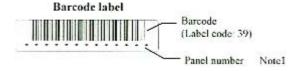
SN-产-F-07-B-161 25/33

7. MARKINGS


The various markings are attached to this product. See "7.4 INDECATION LOCATIONS" for attachment positions.

7.1 PRODUCT LABEL

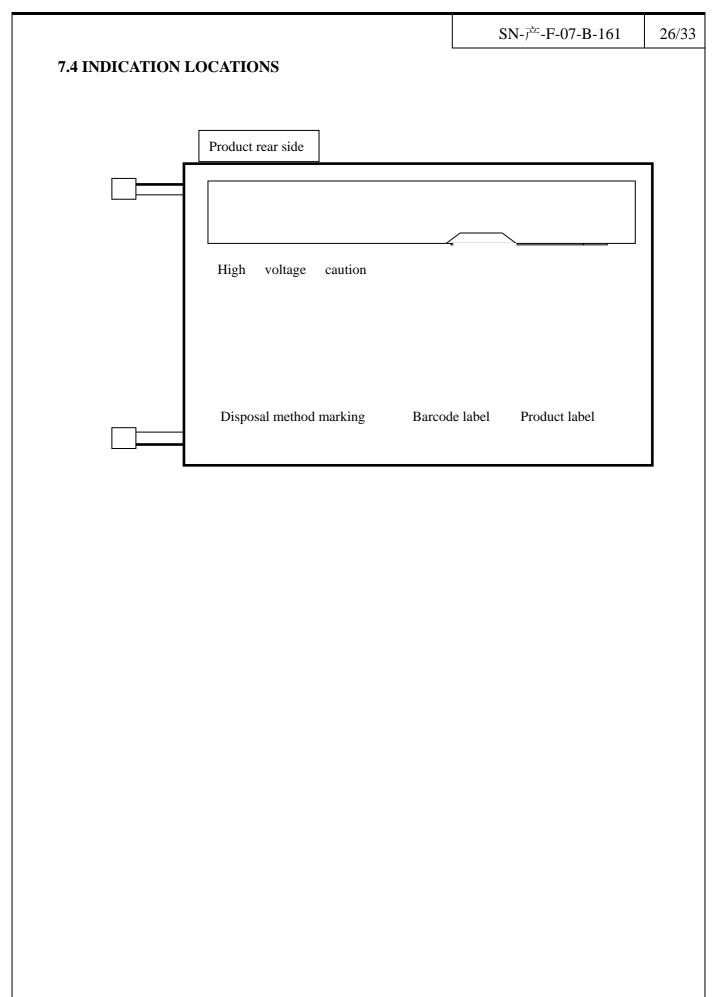
Note2


Note1: The meaning of lot number •Example: 1111A104201001

Jan. to Sep.: Number of month October: A November: B December: C

Note2: Do not attach anything such as label and so on, on the product laber! In case repair the product, SVA-NEC needs the contents of Product label such as the lot number, inspection date and so on, to identify the warranty period with individual product. If SVA-NEC cannot decipher the contents of Product label, such repair shall be entitled to charge. Also SVA-NEC may give a new lot number to reconditioned products.

7.2 BARCODE LABEL


7.3 OTHER MARKINGS

High voltage caution marking

Disposal method marking for lamp

HIGH VOLTAGE

SN-产-F-07-B-161	27/33
*	

8. PACKING, TRANSPORTATION AND DELIVERY(undetermined)

SVA-NEC will pack products to deliver to customer in accordance with SVA-NEC packing specifications, and will deliver products to customer in such a state that products will not suffer from a damage during transportation .The delivery conditions are as follows.

8.1 PACKING

- (1) Packing box
- 5 products are packed up with the maximum in a packing box(See "8.5 OUTLINE FIGURE FOR PACKING ").

Products are put into a plastic bag for prevention of moisture.

The type name and quality are shown on outside of the packing box, either labeling or printing.

- (2)Pallet Packing (See"8.5 OUTLINE FIGURE FOR PACKING")
 - ① Packing boxes are tired on a cardboard pallet.(6 boxes×3 tiers maximum)
 - ②Cardboard sleeve and top cap are attached to the packing boxes, then they are fixed by a band.

8.2 INSPECTION RECORD SHEET

Inspection record sheets are included in the packing box with delivery products to customer. It is summarized to a number of products for pass/fail assessment.

8.3 TRANSPORTATION

The product is transported by vehicle, aircraft or shipment in the state of pallet packing.

8.4 SIZE AND WEIGHT FOR PACKING BOX

Parameter	Packing box	Unit
Size	524 (L) x348 (W) x 423 (H) (typ.)	
Weight	1 (typ.)	
Total weight	13.5 (typ.) (with 5 products)	kg

SN-产-F-07-B-161

29/33

8.5.2 Pallet packing

Note: The ways for Packing and Shipping vary from different shipment volume, dependent on specific situations.

Packing boxes (6boxes×3 tiers maximum)

Cardboard pallet

SN-产-F-07-B-161 30/33

9.PRECAUTIONS

9.1 MEANING OF CUTION SIGNS

The following caution signs have very important meaning .Be sure to read "9.2 CAUTIONS" and "9.3 ATTENTIONS", after understanding these contents!

This sign have the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

9.2 CAUTIONS

touch lamp cables while turn on .Customers will be in danger of an electric shock

- * Do not touch the working backlight and IC. Customers will be in danger of burn injury.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass.(shock :To be not greater 294m/s² and to be not greater 11ms, Pressure: To be not greater 19.6N)

9.3 ATTENTIONS

9.3.1 Handling of the product

- ① Take hold of both ends without touch the circuit board when customer pulls out products (LCD modules) from inner packing box. If customer touches it, products may be broken down or out of adjustment, because of stress to mounting parts.
- ② Do not hook cables nor pull connection cables such as flexible cable and so on , for fear of damage.
- ③ If customer puts down the product temporarily, the product puts on flat subsoil as a display side turns down.
- 4 Take the measures of electrostatic discharge such as earth band, ionic shower and so on, when customer deal with the product, because products may be damaged by electrostatic.
- ⑤The torque for mounting screws must never exceed 0.34N-m. Higher torque values might result in distortion of the bezel.
- (6) The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area) except mounting hole portion.

SN-デ-F-07-B-161 31/33

Bends or twist described above and undue stress to any portion except mounting hole portion may cause display un-uniformity.

- ⑦Do not press or rub on the sensitive display surface .If customer clean on the panel surface, SVA-NEC recommends using the cloth with ethanolic liquid such as screen cleaner for LCD.
- ® Do not push-pull the interface connectors while the product is working, because wrong power sequence may break down the product.
- ⁽⁹⁾ Do not bend or unbend the lamp cable at the near part of the lamp holding rubber, to avoid the damage for high voltage side of the lamp. This damage may cause a lamp breaking and abnormal operation of high voltage circuit.

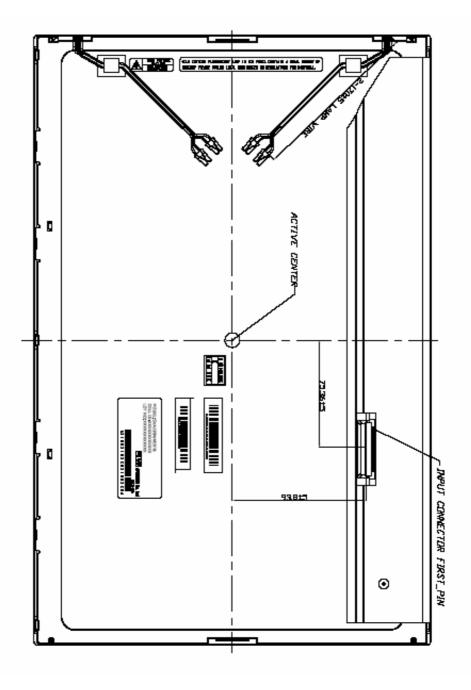
9.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in antistatic pouch in room temperature, because of avoidance for dusts and sunlight, if customer stores the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box must be opened after leave under the environment of an unpacking room temperature enough. Because a situation of dew condensation occurring is changed by the environment temperature and humidity, evaluate the leaving time sufficiently. (Recommendation leaving time: 6 hour or more with packing state)
- ③ Do not operate in a high magnetic field .Circuit boards may be broken down by it.
- ④ This product is not designed as radiation hardened.
- ⑤ Use an original protection sheet on the product surface (polarizer). Adhesive type protection sheet should be avoided, because it may change color or properties of the polarizer.

9.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ②The LCD may be seemed luminance non-uniformity, flicker, vertical seam or small spot by display patterns.
- ③Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time, and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- ④Do not display the fixed pattern for a long time because it may cause image sticking .Use a screen saver, if the fixed pattern is displayed on the screen.
- ⑤The display color may be changed by viewing angle because of the use of condenser sheet in the backlight.
- ⑥Optical characteristics may be changed by input signal timings.
- The interference noise of input signal frequency for this product and luminance control frequency of customer's backlight inverter may appear on a display. Set up luminance control frequency of backlight inverter so that the interference noise doses not appear.


9.3.4 Other

- ①All GND and VCC terminals should be used without a non-connected line.
- ②Do not disassemble a product or adjust volume without permission of SVA-NEC.
- ③Pay attention not to insert waste materials inside of products, if customer uses screw nails.
- ④Pack the product with original shipping package, because of avoidance of some damages during transportation, when customer returns it to SVA-NEC for repair and so on .
- ⑤Not only the module but also the equipment should be packed and transported as the module. becomes vertical .Otherwise, there is the fear that a display dignity decreases by an impact or vibrations.

SN-产-F-07-B-161 32/33 10. **OUTDRAWING** 10.1 FRONT VIEW

SN-デ-F-07-B-161 33/33

10.2 REAR VIEW

				SN-デ	-F-07-B-161	34/33
Rev	Revised date	Main Revision item and sign	Approved by	Checked by	Prepared by	Published date
		日				
		日 日 营 产 产 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日				
		日				
		g n				