SIEMENS

TV-Stereo Processor
TDA 6812-5

Preliminary Data
Bipolar IC

Features

- High quality stereo signal processing
- High S/N ratio
- $\mathrm{I}^{2} \mathrm{C}$ Bus
- Clipping detector and clock generator
- NICAM or AM sound inputs
- Volume control
- Universal audio interface for DOLBY, EQUALIZER, SURROUND SOUND features
- Multiplex 3-SCART connections

- Independent headphones

Type	Ordering Code	Package
TDA 6812-5	Q67000-A5127	P-DIP-40-2

TDA 6812-5 is a complete system for stereo TV-sound, controlled on an $\mathrm{I}^{2} \mathrm{C}$ Bus. The device is made up of three functional blocks.

1. Stereo Processing with High Quality (better than DIN 45500; suitable for NICAM and CD for G-standard with I2C-controlled crosstalk compensation; selectable gain 0/6 dB
a) Three stereo AF-inputs
b) Random switching of all inputs to all outputs
c) Stereo SCART-interface
d) Stereo loudspeaker signal section with volume precontrol, treble/bass control, enlargement of quasi-stereo/stereo sound base, separate L/R-volume control, equalizer interface after tone control
e) Stereo headphones signal section with Ch1/Ch2 and volume control

2. TV-Identification-Signal Decoder

a) Active pilot-tone filter
b) Phase-independent rectifier with very narrow bandwidth for identification-signal decoding
c) Digital integrator for noise rejection
d) Multiplexer for cyclic scanning for stereo or dual-sound identification
e) Externally synchronized PLL for reference-signal generation: synchronization with line sync pulse or $62.5-\mathrm{kHz}$ clock, integrated crystal oscillator and $4-\mathrm{MHz}$ crystal, or with external $4-\mathrm{MHz}$ timing signal

3. Control

a) $\mathrm{I}^{2} \mathrm{C}$ Bus interface with listen/talk function
b) Control of entire audio processing
c) Reading of clipping detector
d) Control of identification-signal decoder
e) Reading of identification-signal decoder
f) Test modes

Pin Functions

Pin No.	Function
1	AF-input mono, left, sound 1 (adjustable)
2	Bias AF-operating point
3	AF-input, right, sound 2
4	N.C.
5	54-kHz input
6	54-kHz filter
8	SCART-input 1, left
9	SCART-input 1, right
10	SCART-input 2, left
11	SCART-input 2, right
12	SCART-input 3, left
13	SCART-input 3, right
14	AF-output SCART (mono, sound 1, left)
15	AF-output SCART (mono, sound 2, right)
16	Output port 1 (open collector)
17	Phase shifter quasi-stereo
18	Phase shifter quasi-stereo
19	Cut-off frequency bass (sound base), left
20	Cut-off frequency bass (sound base), right
21	AF-output, loudspeaker, right
22	AF-output, loudspeaker, left
23	N.C.
24	AF-input, volume control, right

Block Diagram

Circuit Description

Signal Section

The dematrixing and switching of multichannel TV-sound signals are performed in the matrix and switch section by the dual-carrier method. Crosstalk compensation is on the sound 1 input. The compensation stage has a range of $\pm 3 \mathrm{~dB}$ with a smallest increment of 0.2 dB , and gain can also be switched between 0 and 6 dB . In addition to the two inputs for the demodulated sound carriers, there are three dual-channel SCART-inputs. The two matrix AF-inputs can be bypassed internally so that decoded stereo signals of other systems (NICAM) can also be processed. The switch section terminates in the SCART-output and signal paths for the loudspeaker and headphones outputs. AF-inputs can be randomly switched to AF-outputs (8-6 matrix).
In the loudpeaker signal path there is an inital volume control with a range of $0 /-15 \mathrm{~dB}$ and an increment of 1.25 dB . In conjunction with the main volume control that follows the tone control, very high overdriving immunity is ensured. The switchable quasi-stereo section that follows produces a stereo listening effect for mono signals through a $180^{\circ} \mathrm{C}$ phase shift at mid-range frequencies (approx. 1 kHz) in one channel. The following bass control has an increment of 3 dB in its setting range of $+15 /-12 \mathrm{~dB}$. The cut-off frequency for each channel is set by an external capacitor. The circuit for enlarging the stereo sound base can be cut in for stereo signals to make the aural impression even more stereo-like by frequency-dependent antiphase crosstalk of 55%. This works with the same cut-off frequency as the bass control, but the function is largely independent. The treble control, whose cut-off frequency is also set by an external capacitor, likewise has an increment of 3 dB in a setting range of $\pm 12 \mathrm{~dB}$. The main value control with maximum gain of 10 $d B$, which can be adjusted separately for L and R, terminates the loudspeaker signal path. 57 steps with an increment of 1.25 dB mean a setting range of 71.25 dB . Functions like balance or loudness are implemented by software setting of the appropriate tone and volume controls. In the tonecontrol section there is a clipping detector that can be read on the $\mathrm{I}^{2} \mathrm{C}$ Bus and enables automatic volume correction by the controller. After each reading the clipping bit is reset, which enables a renewed check for clipping with each $\mathrm{I}^{2} \mathrm{C}$ Bus read operation.
The headphones signal path includes a volume control with joint L/R-setting. 32 increments of 2 dB produce a range of $62 \mathrm{~dB}(31 \times 2 \mathrm{~dB}=62 \mathrm{~dB})$.

Identification-Signal Decoder

The input of the identification-signal decoder consists of an operational amplifier for selectivity of the pilot tone and its sidebands with an external LC-circuit. The signal is fed to a phase-independent active bandpass filter of very narrow bandwidth (externally adjustable) that detects the presence of the lower sideband of the pilot carrier modulated with the identification signal. The center frequency of the filter is switched back and forth between dual and stereo by a multiplexer (software-controlled timing). The multiplexer halts when a sideband is detected. This first "detected" criterion is freed from noise by a digital integrator followed by a comparator and can then be read on the $\mathrm{I}^{2} \mathrm{C}$ Bus (talker) as stereo or dual mode. The $\mu \mathrm{C}$ controls the signal paths. All necesssary timing signals are derived from a fast settling PLL synchronized by a reference frequency. This reference must be sufficiently identical to the horizontal frequency, but no phase locking is necessary. This means that it is possible to use the crystal-controlled frequency of 62.5 kHz that is often found in PLL-tuning systems. As further alternatives there is an integrated crystal oscillator that requires a $4-\mathrm{MHz}$ crystal, or it is possible to use a clock frequency of 1 or 4 MHz .

Control Section

All functions are controlled by an $\mathrm{I}^{2} \mathrm{C}$ Bus interface which can be both a listener and a talker. The currently valid data are stored in a latch block. The telegram structure is as follows:
start condition - chip address - any number of bytes - stop condition
The following conditions apply to the data bytes:
Before the actual data byte (with setting information) a subaddress byte must always be transmitted, which the $\mathrm{I}^{2} \mathrm{C}$ Bus still interprets as a data byte.

Example: Headphones (HP) volume is to be increased in several steps.

Right	Wrong
Start condition	Start condition
Chip address 84 (Hex)	Chip address 84 (Hex)
Subaddress volume HP 03 (Hex)	Subaddress volume HP 03 (Hex)
Volume Step 808 (Hex)	Volume Step 808 (Hex)
Subaddress volume HP 03 (Hex)	Volume step 909 (Hex)
Volume step 9 09 (Hex)	Volume Step 10 0A (Hex)
Subaddress volume HP 03 (Hex)	Stop condition
Volume Step 10 0A (Hex)	
Stop condition	

Different subaddresses can be used within a telegram, ie without a new start condition. But the change between listener and talker must always be made by stop condition - start condition - chip address. A start condition and a chip address (talk) must always be transmitted before reading. This loads the data that are to be read out on the $\mathrm{I}^{2} \mathrm{C}$ Bus interface for transfer to the $\mu \mathrm{C}$.

Chip Address

MSB	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	LSB
1	0	0	0	0	1	0	R/W

R/W $=0 \rightarrow$ Read (Listen)
R/W = $1 \rightarrow$ Write (Talk)

Subaddress Bytes

	MSB	•	•	•	•	•	•	LSB
Volume precontrol	X	X	X	X	0	0	0	0
Volume left speaker	X	X	X	X	0	0	0	1
Volume right speaker	X	X	X	X	0	0	1	0
Volume headphones	X	X	X	X	0	0	1	1
Treble/bass	X	X	X	X	0	1	0	0
Switching byte I	X	X	X	X	0	1	1	0
Switching byte II	X	X	X	X	0	1	1	1
Switching byte III	X	X	X	X	1	0	0	0
Switching byte IV	X	X	X	X	1	0	0	1
Crosstalk compensation	X	X	X	X	0	1	0	1

Setting Bytes

a) Volume Precontrol

	MSB	•	\bullet	\bullet	\bullet	\bullet	\bullet	LSB
Maximum volume	X	H	Q	0	0	0	0	X
Max. -1	X	H	Q	0	0	0	1	X
Min. +1	X	H	Q	1	0	1	1	X
Minimum volume	X	H	Q	1	1	0	0	X
Power ON	0	0	0	0	0	0	0	1

$\mathrm{H}=0$ Identification-signal decoder synchronization with $f_{\mathrm{H}}=15.625 \mathrm{kHz}$; power ON
$\mathrm{H}=1$ Identification-signal decoder synchronization with $4 \times f_{\mathrm{H}}$ (must be 1 for operation with crystal or 4-MHz reference frequency)
$Q=0 \quad P L L$ synchronization with line sync pulse; power ON
$\mathrm{Q}=1$ PLL synchronization with crystal oscillator (the bit for H must also be set to 1)
b) L/R-Loudspeaker Volume

	MSB	•	\bullet	\bullet	\bullet	\bullet	\bullet	LSB
Maximum volume	X	X	1	1	1	1	1	1
Max. -1	X	X	1	1	1	1	1	0
Max. -15	X	X	1	1	0	0	0	0
Max. -55	X	X	0	0	1	0	0	0
Power ON	0	0	0	0	0	0	0	1

c) Headphones Volume

	MSB	•	•	•	\bullet	\bullet	\bullet	LSB
Maximum volume	T2	T1	T0	1	1	1	1	1
Max. - 1	T2	T1	T0	1	1	1	1	0
Max. -15	T2	T1	T0	1	0	0	0	0
Max. -31	T2	T1	T0	0	0	0	0	X
Power ON	0	0	0	0	0	0	0	1

$\mathrm{T} 0, \mathrm{~T} 1$ and T 2 are test bits and must be set to 0 for normal operation.
d) Crosstalk Compensation Matrix (sound 1)

	MSB	•	\bullet	\bullet	\bullet	\bullet	\bullet	LSB
Maximum gain	X	X	X	1	1	1	1	1
Max. - 1	X	X	X	1	1	1	1	0
Gain 0 dB	X	X	X	1	0	0	0	0
Minimum gain	X	X	X	0	0	0	0	1
Minimum gain	X	X	X	0	0	0	0	X
Power ON	X	X	X	0	0	0	0	1

e) Treble / Bass

	MSB	-	-	-	-	-	-	LSB
Linear	1	0	0	0	1	0	0	0
Max. treble, lin. bass	1	1	0	0	1	0	0	0
Max. treble, lin. bass	1	1	X	X	,	0	0	0
Min. treble, lin. bass	0	1	0	0	1	0	0	0
Min. treble, lin. bass	0	0	X	X	1	0	0	0
Lin. treble, max. bass	1	0	0	0	1	1	0	1
Lin. treble, max. bass	1	0	0	0	1	1	X	1
Lin. treble, max. bass	1	0	0	0	1	1	1	X
Lin. treble, min. bass	1	0	0	0	0	1	0	0
Lin. treble, min. bass	1	0	0	0	0	0	X	X
Max. treble, max. bass	1	1	X	X	1	1	X	1
Min. treble, min. bass	0	0	X	X	0	0	X	X
Power ON	0	0	0	0	0	0	0	1
	MSB treble			LSB treble	$\begin{aligned} & \text { MSB } \\ & \text { bass } \end{aligned}$			$\begin{aligned} & \text { LSB } \\ & \text { bass } \end{aligned}$

f) Switching Bytes I, II, III

Switching Byte I SCART-output
Switching byte II Headphones output
Switching byte III Loudspeaker output

MSB	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	LSB	
L3	L2	L1	L0	R3	R2	R1	R0	
0	0	0	0	0	0	0	1	Power ON

L0 thru L3 left output, RO thru 3 right output.

L3	L2	L1	L0	Selected Input
0	0	0	0	MUTE
0	0	0	1	AF-input left, mono, sound 1
0	0	1	0	AF-input right, sound 2
0	0	1	1	AF-input left, dematrixed
0	1	0	0	SCART 1 left
0	1	0	1	SCART 1 right
0	1	1	0	SCART 2 left
0	1	1	1	SCART 2 right
1	0	0	0	SCART 3 left
1	0	0	1	SCART 3 right

Assignment R3 thru R0 is identical to L3 thru LO.
g) Switching Byte IV

MSB	\bullet	\cdot	\bullet	\bullet	\bullet	\bullet	LSB
MPX0	MPX1	QSt	BE	Mono	P1	P2	Matrix

MPX0	MPX1	MPX-Period	Recommended $C_{36,38}$	Perm. Xtal Tolerances	
0	0	2 s	Power-ON	$1 \mu \mathrm{~F}$	$\pm 20 \mathrm{ppm}$
0	1	4 s		$2.2 \mu \mathrm{~F}$	$\pm 10 \mathrm{ppm}$
1	0	8 s	$4.7 \mu \mathrm{~F}$	$\pm 5 \mathrm{ppm}$	

Settings specially recommended for crystal operation

0	0	2 s	470 nF	$\pm 40 \mathrm{ppm}$
0	1	4 s	330 nF	$\pm 70 \mathrm{ppm}$

MXP-period $=2$ s means that identification-signal decoder searches 1 s for dual and 1 s for stereo. It is basically permissible, for the given $C_{36,38}$, to make the MPX period longer, but not shorter.

QSt	$=0$	
Quasi-stereo OFF; power ON		
QSt	$=1$	Quasi-stereo ON
BE	$=0$	Stereo base enlargement OFF; power ON
BE	$=1$	Stereo base enlargement ON
Mono	$=0$	
Identification-signal decoder set to stereo and held; power ON		
Mono	$=1$	Normal operation of identification-signal decoder
P 1	$=0$	Port 1 (open collector) low (low-impedance); power ON
P 1	$=1$	Port 1 high (high impedance)
P 2	$=0$	Port 2 (open collector) low (low-impedance); power ON
P 2	$=1$	Port 2 high (high impedance)
Matrix	$=0$	Gain matrix 0 dB
Matrix	$=1$	Gain matrix 6 dB ; power ON

h) Talk Mode

MSB	\bullet		\bullet	\bullet	\bullet	\bullet
•	LSB					
St	D	T3	T4	T5	CL	X
0	0	Decoder detects mono				
1	0	Decoder detects stereo 0	1			
1	1	Decoder detects dual				

$C L=1 \quad$ Loudspeaker signal path at clipping limit
(CL is automatically reset after each reading operation)
T3 thru T5 are test bits.

Absolute Maximum Ratings

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$; all voltages relatives to V_{SS}

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{21}	0	14	V	
Max. DC-voltage	V_{1}	0	V_{32}	V	
Max. DC-voltage	V_{2}	0	V_{32}	V	
Max. DC-voltage	V_{3}	0	V_{32}	V	
Max. DC-voltage	V_{5}	0	V_{32}	V	
Max. DC-voltage	V_{7}	0	V_{32}	V	
Max. DC-voltage	V_{8}	0	V_{32}	V	
Max. DC-voltage	V_{9}	0	V_{32}	V	
Max. DC-voltage	V_{10}	0	V_{32}	V	
Max. DC-voltage	V_{11}	0	V_{32}	V	
Max. DC-voltage	V_{12}	0	V_{32}	V	
Max. DC-voltage	V_{15}	0	V_{32}	V	
Max. DC-voltage	V_{16}	0	V_{32}	V	
Max. DC-voltage	V_{17}	0	V_{32}	V	
Max. DC-voltage	V_{18}	0	V_{32}	V	
Max. DC-voltage	V_{19}	0	V_{32}	V	
Max. DC-voltage	V_{20}	0	V_{32}	V	
Max. DC-voltage	V_{24}	0	V_{32}	V	
Max. DC-voltage	V_{25}	0	V_{32}	V	
Max. DC-voltage	V_{28}	0	V_{32}	V	
Max. DC-voltage	V_{29}	0	V_{32}	V	
Max. DC-voltage	V_{33}	0	V_{32}	V	
Max. DC-voltage	V_{34}	0	V_{32}	V	
Max. DC-voltage	V_{36}	0	V_{32}	V	
Max. DC-voltage	V_{38}	0	V_{32}	V	
Max. DC-current	I_{6}	0	2	mA	
Max. DC-current	I_{13}	0	2	mA	
Max. DC-current	I_{14}	0	2	mA	
Max. DC-current	I_{21}	0	2	mA	
Max. DC-current	I_{22}	0	2	mA	
Max. DC-current	I_{26}	0	2	mA	
Max. DC-current	I_{27}	0	2	mA	
Max. DC-current	I_{30}	0	2	mA	
Max. DC-current	I_{31}	0	2	mA	
Max. DC-current	I_{35}	0	2	mA	
Max. DC-current	I_{39}	0	2	mA	
ESD-voltage	$V_{\text {ESD }}$	-2	2	kV	$\mathrm{HBM}(R=1.5 \mathrm{k} \Omega$,
					$C=100 \mathrm{pF})$

Absolute Maximum Ratings (cont'd)
$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$; all voltages relatives to V_{SS}

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
ESD-voltage	$V_{\text {ESD7-14 }}$	-6	6	kV	$\mathrm{HBM}(R=1.5 \mathrm{k} \Omega$, $C=100 \mathrm{pF})$
Junction temperature	T_{j}		150	${ }^{\circ} \mathrm{C}$	
Storage temperature	$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$	
Thermal resistance system ambient	$R_{\text {th } \mathrm{SA}}$		38	$\mathrm{~K} / \mathrm{W}$	

Operating Range

Supply voltage	V_{32}	10	13.2	V	
Ambient temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Input frequency range	f_{I}	0.01	20	kHz	

Characterstics

$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{AF}$-reference level $0 \mathrm{~dB}=250 \mathrm{mVrms}$ unless otherwise defined; in accordance with test circuit 1.
$\mathrm{I}^{2} \mathrm{C}$ Bus preset:
Start - $84-01,3 F-02,3 F-00,00-03,1 F-04,88-05,10-06,12-07,12-08,12-09,00-S t o p$
Chip address - Vol ${ }_{\text {LSI }} 63-\mathrm{Vol}_{\mathrm{LSr}} 63-\mathrm{Vol}_{\text {Pre }} \mathrm{O}$ - Vol HP 31 - Tone lin - Gain 0 dB - Switch byte I, II, II, IV

The basic setting for each item in the specifications is always preset; the test conditions only state settings that differ. Details in italics are for explanation of the hex codes, for switching bits only set bits or functions are given. 5

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Current consumption	I_{32}		58	85	mA	

Signal Section

Max. gain	V_{22-1}	-2	0	2	dB	
Max. gain	V_{21-3}	-2	0	2	dB	
Max. gain	V_{27-1}	-2	0	2	dB	
Max. gain	V_{26-3}	-2	0	2	dB	
Max. gain	V_{31-1}	-2	0	2	dB	
Max. gain	V_{30-3}	-2	0	2	dB	
Gain	V_{13-1}	-2	0	2	dB	
Gain	V_{14-3}	-2	0	2	dB	
Max. gain	V_{22-3}	-2	0	2	dB	08,$32 ;$ Stereo; $V_{1}=0$
Max. gain	V_{21-3}	-2	0	2	dB	08,$32 ;$ Stereo; $V_{1}=0$
Max. gain	V_{27-3}	-2	0	2	dB	08,$32 ;$ Stereo; $V_{1}=0$
Max. gain	V_{26-3}	-2	0	2	dB	08,$32 ;$ Stereo; $V_{1}=0$
Max. gain	V_{31-3}	-2	0	2	dB	07,$32 ;$ Stereo; $V_{1}=0$
Max. gain	V_{31-3}	-2	0	2	dB	07,$32 ;$ Stereo; $V_{1}=0$
Max. gain	V_{22-1}	4	6	8	dB	08,$32 ;$ Stereo; $V_{3}=0$
Max. gain	V_{27-1}	4	6	8	dB	08,$32 ;$ Stereo; $V_{3}=0$
Max. gain	V_{31-1}	4	6	8	dB	07,$32 ;$ Stereo; $V_{3}=0$
Gain	V_{13-3}	-2	0	2	dB	06,$32 ;$ Stereo; $V_{1}=0$
Gain	V_{13-1}	4	6	8	dB	06,$32 ;$ Stereo; $V_{3}=0$
Max. gain	V_{22-1}	4	6	8	dB	09,$01 ; 6$ dB
Max. gain	V_{21-3}	4	6	8	dB	09,$01 ; 6 d B$
Max. gain	V_{27-1}	4	6	8	dB	09,$01 ; 6$ dB
Max. gain	V_{26-3}	4	6	8	dB	09,$01 ; 6 \mathrm{~dB}$
Max. gain	V_{31-1}	4	6	8	dB	09,$01 ; 6 \mathrm{~dB}$
Max. gain	V_{30-3}	4	6	8	dB	09,$01 ; 6 \mathrm{~dB}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Gain Gain	$\begin{aligned} & \hline V_{13-3} \\ & V_{14-3} \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ 4 \end{array}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ 8 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 09,01 ; 6 d B \\ & 09,01 ; 6 d B \end{aligned}$
Max. gain	V_{22-3}	4	6	8	dB	$08,32-09,01 ; V_{1}=0$ Stereo; $6 d B$
Max. gain	V_{21-3}	4	6	8	dB	$08,32-09,01 ; V_{1}=0$ Stereo; 6 dB
Max. gain	V_{27-3}	4	6	8	dB	$\begin{aligned} & 08,32-09,01 ; V_{1}=0 \\ & \text { Stereo; } 6 d B \end{aligned}$
Max. gain	V_{26-3}	4	6	8	dB	$08,32-09,01 ; V_{1}=0$ Stereo; $6 d B$
Max. gain	V_{31-3}	4	6	8	dB	07,32-09,01; $V_{1}=0$ Stereo; $6 d B$
Max. gain	V_{30-3}	4	6	8	dB	$07,32-09,01 ; V_{1}=0$ Stereo; $6 d B$
Max. gain	V_{22-1}	10	12	14	dB	$08,32-09,01 ; V_{3}=0$ Stereo; $6 d B$
Max. gain	V_{27-1}	10	12	14	dB	$08,32-09,01 ; V_{3}=0$ Stereo; 6 dB
Max. gain	V_{31-1}	10	12	14	dB	07,32-09, 01; $V_{3}=0$ Stereo; 6 dB
Gain		4		8	dB	$06,32-09,01 ; V_{1}=0$ Stereo; 6 dB
Gain	V_{13-1}	10	12	14	dB	$\begin{aligned} & 06,32-09,01 ; V_{3}=0 \\ & \text { Stereo; } 6 d B \end{aligned}$
Max. gain	V_{22-7}	-2	0	2	dB	08,45; SCART
Max. gain	V_{21-8}	-2	0	2	dB	08,45; SCART
Max. gain	V_{27-7}	-2	0	2	dB	08,45; SCART
Max. gain	V_{26-8}	-2	0	2	dB	08,45; SCART
Max. gain	V_{31-7}	-2	0	2	dB	07,45; SCART
Max. gain	V_{30-8}	-2	0	2	dB	07,45; SCART
Gain	V_{13-7}	-2	0	2	dB	06,45; SCART
Gain	V_{14-8}	-2	0	2	dB	06,45; SCART

Same values apply for pins 9 thru 12

Min. gain main control	V_{22-1}		-70	-65	dB	$\begin{array}{\|l} 01,08-02,08 \\ \text { Vol }_{\mathrm{LSI}} 8-\mathrm{Vol} \\ \mathrm{LSr} \end{array} 8$
Min. gain main control	V_{21-3}		- 70	-65	dB	$\begin{aligned} & 01,08-02,08 \\ & \text { Vol }_{\mathrm{LSI}} 8-\mathrm{Vol}_{\mathrm{LSr}} 8 \end{aligned}$
Min. gain precontrol	V_{22-1}	- 17	- 15	-13	dB	$\begin{array}{\|l} 01,08-02,08 \\ \text { Vol Pre } 24 \end{array}$
Min. gain precontrol	V_{21-3}	- 17	- 15	-13	dB	$\begin{array}{\|l} 01,08-02,08 \\ \text { Vol Pre } 24 \end{array}$

Characteristics (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	typ.	max.	

Same values apply for pins 7 thru 12

Min. gain	V_{31-1}		-62	-57	dB	03,$01 ;$ Vol $_{\mathrm{HP}} 1$
Min. gain	V_{30-3}		-62	-57	dB	03,$01 ;$ Vol $_{\mathrm{HP}} 1$

Same values apply for pins 7 thru 12

Flutter and wow Flutter and wow	$\left\{\begin{array}{l} \Delta V_{21-22} \\ \Delta V_{30-31} \end{array}\right.$			± 2 ± 2	dB dB	$\begin{aligned} & 01,3 \mathrm{~F}-01,24 \\ & 02,3 \mathrm{~F}-02,24 \\ & \text { Vol }_{\mathrm{LSI}} 63-36-\mathrm{Vol} \mathrm{LSr} 63-36 \\ & 03,1 \mathrm{~F}-03,13 \\ & \text { Vol }_{\mathrm{HP}} 31-19 \end{aligned}$
Increment Vol 22	ΔV_{22}	0	1.25	2.5	dB	$01, X-01,(X \pm 1)$
Increment Vol 21	ΔV_{21}	0	1.25	2.5	dB	$01, \mathrm{X}-01,(\mathrm{X} \pm 1)$ Vol ${ }_{\mathrm{LSr}} X-\mathrm{Vol} \mathrm{LSr}_{\mathrm{r}}(X \pm 1)$
Increment Vol 22	ΔV_{22}	0	1.25	2.5	dB	$\begin{aligned} & 01, X-01,(X \pm 1) \\ & \text { Volpre } X \text {-Vol Pre }(X \pm 1) \end{aligned}$
Increment Vol 21	ΔV_{21}	0	1.25	2.5	dB	$\begin{aligned} & 01, \mathrm{X}-01,(X \pm 1) \\ & \text { Vol }_{\text {Pre }} X-\operatorname{Vol} \text { Pre } \end{aligned}(X \pm 1)$
Increment Vol 30	ΔV_{30}	0	2	4	dB	$\begin{aligned} & 01, \mathrm{X}-01,(\mathrm{X} \pm 1) \\ & \mathrm{Vol}_{\mathrm{HP}} X-\mathrm{Vol}_{\mathrm{HP}}(X \pm 1) \end{aligned}$
Increment Vol 31	ΔV_{31}	0	2	4	dB	$\begin{aligned} & 03, X-03,(X \pm 1) \\ & \text { Vol }_{\text {HP }} X-\mathrm{Vol}_{\mathrm{HP}}(X \pm 1) \end{aligned}$
Matrix adjustment	V_{22-1}	2.5	3	3.5	dB	05,1F; Gain max
Matrix adjustment	V_{31-1}	2.5	3	3.5	dB	05,1F; Gain max
Matrix adjustment	V_{13-1}	2.5	3	3.5	dB	05,1F; Gain max
Matrix adjustment	V_{22-1}	-3.5	-3	-2.5	dB	05,01; Gain max
Matrix adjustment	V_{31-1}	-3.5	-3	-2.5	dB	05,01; Gain max
Matrix adjustment	V_{13-1}	-3.5	-3	-2.5	dB	05,01; Gain max
Adj. increment	ΔV_{22}	0.1	0.2	0.3	dB	$\begin{aligned} & 05, X-05,(X \pm 1) \\ & \text { Gain } X \text {-Gain }(X \pm 1) \end{aligned}$
Adj. increment	ΔV_{31}	0.1	0.2	0.3	dB	$\begin{aligned} & 05, X-05,(X \pm 1) \\ & \text { Gain } X \text {-Gain }(X \pm 1) \end{aligned}$
Adj. increment	ΔV_{13}	0.1	0.2	0.3	dB	$\begin{aligned} & 05, X-05,(X \pm 1) \\ & \text { Gain } X \text {-Gain }(X \pm 1) \end{aligned}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Bass boost	V_{31-1}	13	15		dB	$04,8 \mathrm{~F} ; f_{\mathrm{I}}=40 \mathrm{~Hz}$
Bass boost	V_{21-3}	13	15		dB	$04,8 \mathrm{~F} ; f_{1}=40 \mathrm{~Hz}$ Bass max, Treble lin
Bass cutoff	V_{31-1}		-12		dB	$04,80 ; f_{\mathrm{I}}=40 \mathrm{~Hz}$ Bass max, Treble lin
Bass cutoff	V_{21-3}		- 12		dB	$04,80 ; f_{\mathrm{I}}=40 \mathrm{~Hz}$ Bass max, Treble lin
Increment bass	ΔV_{21}	1	3	5	dB	04,8X-04.8 ($\mathrm{X} \pm 1$)
Increment bass	ΔV_{22}				dB	Bass X-Bass $(X \pm 1)$ 04,8X-04.8 ($\mathrm{X} \pm 1$) Bass X-Bass $(X \pm 1)$
Treble boost	V_{22-1}	10	12		dB	$04,8 \mathrm{~F} ; f_{\mathrm{I}}=15 \mathrm{kHz}$
Treble boost	V_{2}	10	12		dB	$04,8 \mathrm{~F} ; f_{\mathrm{I}}=15 \mathrm{kHz}$ Treble max, Bass lin
			-12			$04,8 \mathrm{~F} ; f_{\mathrm{I}}=15 \mathrm{kHz}$ Treble max, Bass lin
Treble cut-off	V_{21-3}		- 12		dB	$04,8 \mathrm{~F} ; f_{\mathrm{I}}=15 \mathrm{kHz}$ Treble max, Bass lin
Increment treble						$\begin{aligned} & 04,8 \mathrm{X}-04,(\mathrm{X} \pm 1) 8 \\ & \text { Treble } X \text {-Treble }(X \pm 1) \end{aligned}$
Increment treble	ΔV_{22}	1	3	5	dB	$\begin{aligned} & 04,8 \mathrm{X}-04,(\mathrm{X} \pm 1) 8 \\ & \text { Treble X-Treble }(X \pm 1) \end{aligned}$
Sound linearity					dB	$\begin{aligned} & 04,88 ; \\ & f_{\mathrm{I}}=40 \mathrm{~Hz}-15 \mathrm{kHz} \end{aligned}$
Sound linearity	ΔV_{22}			± 2	dB	Treble, Bass lin 04,88; $f_{1}=40 \mathrm{~Hz}-15 \mathrm{kHz}$ Treble, Bass lin
Response threshold of clipping detector	V_{1}		580		mVrms	$\begin{array}{\|l} \hline 04,8 \mathrm{~F} ; f_{\mathrm{l}}=40 \mathrm{~Hz} \\ \text { Treble lin, Bass max } \\ 01,2 \mathrm{~F}-02,2 \mathrm{~F} \\ \text { Vol }_{\text {LSI }} 47-\text { Vol }_{\text {LSr }} 47 \\ \hline \end{array}$

Same values apply for pins 3 and 7 thru 12

Channel separation	ΔV_{21-22}	50			dB	V_{3} or $V_{1}=600 \mathrm{mVrms}$
Channel separation	ΔV_{30-31}	50			dB	V_{3} or $V_{1}=600 \mathrm{mVrms}$
Channel separation	ΔV_{13-14}	50			dB	V_{3} or $V_{1}=600 \mathrm{mVrms}$

Characteristics (cont'd)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Crosstalk attenuation	$\alpha_{\text {In/OW }}$	60			dB	$\begin{aligned} & V_{\mathrm{IW}}=0 ; \\ & V_{\mathrm{IN1}, 3}=600 \mathrm{mVrms} ; \\ & V_{\mathrm{IN} 7-12}=2 \mathrm{Vrms} \end{aligned}$
Muting	α_{1-22}	80			dB	08,0X; $V_{1}=600 \mathrm{mVrms}$ MUTE L
Muting	α_{3-21}	80			dB	08,0X; $V_{3}=600 \mathrm{mVrms}$ MUTE R
Muting	α_{1-27}	80			dB	08,0X; $V_{1}=600 \mathrm{mVrms}$ MUTE L
Muting	α_{3-26}	80			dB	$08,0 X ; V_{3}=600 \mathrm{mVrms}$ MUTE R
Muting	α_{1-31}	80			dB	$07,0 X ; V_{1}=600 \mathrm{mVrms}$ MUTE L
Muting	α_{3-30}	80			dB	$07,0 X ; V_{3}=600 \mathrm{mVrms}$ MUTE R
Muting	α_{3-14}					06,0X; $V_{3}=600 \mathrm{mVrms}$ MUTE R
Muting	α_{1-13}	80			dB	06,0X; $V_{1}=600 \mathrm{mVrms}$ MUTE L

Same values apply for pins 7 thru 12; $V_{7-12}=2 \mathrm{Vrms}$

Max. input voltage	$V_{3}{ }^{*}$	600			mVrms	$V_{21} \leq 1 \%$
Max. input voltage	V_{1}	600			mVrms	$V_{22} \leq 1 \%$
Max. input voltage	V_{1}	300			mVrms	$V_{22} \leq 1 \% ;$ stereo
Max. input voltage	$V_{3}{ }^{*}$	300			mVrms	$V_{21} \leq 1 \% ; 09,01 ; 6 \mathrm{~dB}$
Max. input voltage	V_{1}	300			mVrms	$V_{22} \leq 1 \% ; 09,01 ; 6 \mathrm{~dB}$
Max. input voltage	V_{1}	150			mVrms	$V_{22} \leq 1 \% ; 09,01 ; 6 \mathrm{~dB}$; stereo

* $V_{\text {IN }}$ in mono mode without SC2 $V_{3}=2 \mathrm{Vrms}$ and 1 Vrms

Max. input voltage	V_{24}	3.4			Vrms	$V_{21} \leq 1 \%$
Max. input voltage	V_{25}	3.4			Vrms	$V_{22} \leq 1 \%$
Max. input voltage	$V_{7}{ }^{\star}$	2			Vrms	$V_{22} \leq 3 \%$
Max. input voltage	$V_{8}{ }^{*}$	2			Vrms	$V_{21} \leq 3 \%$

* Full tone control possible when 00,18; Vol Pre 24

Same values apply for pins 9 thru 12

Distortion factor	$T H D_{30}$	0.01	0.1	\%	$V_{3}=250 \mathrm{mVrms}$
Distortion factor	$T H D_{31}$	0.01	0.1	\%	$V_{1}=250 \mathrm{mVrms}$
Distortion factor	$T H D_{30}$	0.01	0.1	\%	$\begin{aligned} & V_{3}=250 \mathrm{mVrms} ; 03,15 \\ & \text { Vol }_{\mathrm{HP}} 21 \end{aligned}$
Distortion factor	$T H D_{31}$	0.01	0.1	\%	$\begin{aligned} & V_{3}=250 \mathrm{mVrms} \\ & \text { Vol }_{\mathrm{HP}} 21 \end{aligned}$

Same values apply for pins 7 thru 12; $V_{7-12}=600 \mathrm{mVrms}$

Characteristics (cont'd)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Distortion factor	$T H D_{22}$		0.01	0.1	\%	$V_{1}=250 \mathrm{mVrms}$
Distortion factor	$T H D_{21}$		0.01	0.1	\%	$V_{3}=250 \mathrm{mVrms}$
Distortion factor	$T H D_{22}$		0.01	0.2	\%	$\begin{aligned} & V_{1}=0.25 \mathrm{Vrms} \\ & 01,2 \mathrm{~F}-02,2 \mathrm{~F} \end{aligned}$
Distortion factor	$T H D_{21}$		0.01	0.2	\%	$\begin{aligned} & \mathrm{Vol}_{\text {LSI }} 47-\mathrm{Vol}_{\mathrm{LSr}} 47 \\ & V_{3}=0.25 \mathrm{Vrms} \\ & 01,2 \mathrm{~F}-02,2 \mathrm{~F} \end{aligned}$
Distortion factor	$T H D_{22}$		0.01	0.4	\%	$\begin{aligned} & \text { Vol } \mathrm{LSI}^{47-\mathrm{Vol}} \mathrm{LSr} 47 \\ & V_{1}=250 \mathrm{mVrms} ; 04 . \mathrm{XX} \\ & \text { Tone random } \end{aligned}$
Distortion factor	$T H D_{21}$		0.01	0.4	\%	$V_{3}=250 \mathrm{mVrms} ; 04 . \mathrm{XX}$ Tone random

Same values apply for pins 7 thru 12; $V_{7-12}=600 \mathrm{mVrms}$

Distortion factor	$T H D_{14}$		0.01	0.1	$\%$	$V_{3}=250 \mathrm{mVrms}$
Distortion factor	$T H D_{13}$		0.01	0.1	$\%$	$V_{1}=250 \mathrm{mVrms}$

Same values apply for pins 7 thru 12; $V_{7-12}=600 \mathrm{mVrms}$

Antiphase crosstalk sound base	ΔV_{22-21}	0.5	0.55			$V_{3}=600 \mathrm{mVrms} ;$ $f_{1}=2 \mathrm{kHz} ; 09,10$ Base
Antiphase crosstalk sound base	ΔV_{21-22}	0.5	0.55		$V_{3}=600 \mathrm{mVrms} ;$ $f_{1}=2 \mathrm{kHz} ; 09,10$ Base	
Sound base phase	Φ_{21-22}	150	180	210	deg	$V_{1}=600 \mathrm{mVrms} ; 09,10$ $B a s e ; ~ f=2 \mathrm{kHz}$ $V_{3}=600 \mathrm{mVrms} ; 09,10$ $B a s e ; f=2 \mathrm{kHz}$
Sound base phase	Φ_{22-21}	150	180	210	deg	
Phase rotation quasi stereo	Φ_{22-21}	0	10	40	deg	$V_{3}, 1=600 \mathrm{mVrms} ;$ 09,$20 ; Q S t ; f=40 \mathrm{~Hz}$ $V_{3}, 1=600 \mathrm{mVrms} ;$ 09,$20 ; Q S t ; f=700 \mathrm{~Hz}$ $V_{3}, 1=600 \mathrm{mVrms} ;$ 09,$20 ; Q S t ; f=15 \mathrm{kHz}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Unweighted SNR	$\alpha_{\text {S/N22 }}$	90	97		dB	$V_{\text {Nrms }} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; $V_{1}=0.6 \mathrm{Vrms}$
Unweighted SNR	$\alpha_{\text {S/N21 }}$	90	97		dB	$V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{1}=0.6 \mathrm{Vrms}$
Unweighted SNR	$\alpha_{\text {S/N22 }}$	70	80		dB	$V_{\text {Nrms }} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; $V_{1}=0.6 \mathrm{Vrms}$ 01,27-02,27
Unweighted SNR	$\alpha_{\text {S/N21 }}$	70	80		dB	$\begin{aligned} & V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}} ; \\ & V_{1}=0.6 \mathrm{Vrms} \\ & 01,27-02,27 \\ & \text { Vol }_{\text {LSI }} 39-\text { Vol }_{\text {LSr }} 39 \end{aligned}$
Noise voltage	$V_{\mathrm{N} 22}$		2	10	$\mu \mathrm{Vrms}$	$V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; 01,00-02,00
Noise voltage	$V_{\text {N21 }}$		2	10	$\mu \mathrm{Vrms}$	$V_{\text {Nrms }} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; 01,00-02,00 $\mathrm{Vol}_{\mathrm{LSI}} \mathrm{O}-\mathrm{Vol} \mathrm{LSr}^{0}$
Unweighted SNR	$\alpha_{\text {S/N31 }}$	90	97		dB	$V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{1}=0.6 \mathrm{Vrms}$
Unweighted SNR	$\alpha_{\text {S/N30 }}$	90	97		dB	$V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{3}=0.6 \mathrm{Vrms}$
Unweighted SNR	$\alpha_{\text {S/N31 }}$	70	80		dB	$V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{1}=0.6 \mathrm{Vrms}$ 03,$10 ; \mathrm{Vol}_{\mathrm{HP}} 16$
Unweighted SNR	$\alpha_{\text {S/N30 }}$	70	80		dB	$V_{\text {Nrms }} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; $V_{3}=0.6 \mathrm{Vrms}$ 03,10; Vol HP 16
Noise voltage	$V_{N 31}$					$V_{\mathrm{Nrms}} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; 03,$00 ; \mathrm{Vol}_{\mathrm{HP}} \mathrm{O}$
Noise voltage	$V_{\text {N30 }}$		2	10	$\mu \mathrm{Vrms}$	$V_{\text {Nrms }} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; 03,00; $\mathrm{Vol}_{\mathrm{HP}} \mathrm{O}$
Unweighted SNR	$\alpha_{\text {S/N13 }}$	90	97		dB	$V_{\text {Nrms }} 20 \mathrm{~Hz}-20 \mathrm{kHz}$; $V_{1}=0.6 \mathrm{Vrms}$
Unweighted SNR	$\alpha_{\text {S/N14 }}$	90	97		dB	$V_{\text {Nrms } 20 \mathrm{~Hz}-20 \mathrm{kHz}}$; $V_{3}=0.6 \mathrm{Vrms}$

Characteristics (cont'd)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
DC transition	ΔV_{22}			± 10	mV	01,X-01, X ± 1
$\Delta 1$ bit	ΔV_{2}			+ 10	mV	$\begin{aligned} & \text { Vol LSI X-Vol LSI }(X \pm 1) \\ & 02, X-02, X \pm 1 \end{aligned}$
$\Delta 1$ bit	ΔV_{2}			± 10	mV	$\operatorname{Vol}_{\mathrm{LSr}} X-\mathrm{Vol}_{\mathrm{LSr}}(X \pm 1)$
DC transition	ΔV_{22}			± 10	mV	00, $\mathrm{X}-04, \mathrm{X} \pm 1$
$\Delta 1$ bit						Vol ${ }_{\text {Pre }} X$-Vol ${ }_{\text {Pre }}(X \pm 1)$
DC transition	ΔV_{21}			± 10	mV	00, X-04, X ± 1
$\Delta 1$ bit						Vol Pre X-Vol ${ }_{\text {Pre }}(X \pm 1)$
DC transition	ΔV_{22}			± 10	mV	04, X-05, $\mathrm{X} \pm 1$
$\Delta 1$ bit						Tone X-Tone ($X \pm 1$)
DC transition	ΔV_{21}			± 10	mV	04, X-05, $\mathrm{X} \pm 1$
$\Delta 1$ bit						Tone X-Tone ($X \pm 1$)
DC transition	ΔV_{30}			± 10	mV	03,X-03, $\mathrm{X} \pm 1$
$\Delta 1$ bit						$\mathrm{Vol}_{\mathrm{HP}} X-\mathrm{Vol} \mathrm{HP}^{(X \pm 1)}$
DC transition	ΔV_{31}			± 10	mV	03, X-03, $\mathrm{X} \pm 1$
$\Delta 1$ bit						$\mathrm{Vol}_{\mathrm{HP}} X-\mathrm{Vol} \mathrm{HP}(X \pm 1)$

Design-Related Data

Input resistance	R_{1}	22			$\mathrm{k} \Omega$	
Input resistance	R_{3}	22			$\mathrm{k} \Omega$	
Input resistance	R_{7}	25			$\mathrm{k} \Omega$	
Input resistance	R_{8}	25			$\mathrm{k} \Omega$	
Input resistance	R_{9}	25			$\mathrm{k} \Omega$	
Input resistance	R_{10}	25			$\mathrm{k} \Omega$	
Input resistance	R_{11}	25			$\mathrm{k} \Omega$	
Input resistance	R_{12}	25			$\mathrm{k} \Omega$	
Output resistance	R_{13}			60	Ω	
Output resistance	R_{14}			60	Ω	
Output resistance	R_{21}			60	Ω	
Output resistance	R_{22}			60	Ω	
Output resistance	R_{26}			200	Ω	
Output resistance	R_{27}			200	Ω	
Output resistance	R_{30}			200	Ω	
Output resistance	R_{31}			200	Ω	

Characteristics (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition	Test Circuit
		min.	typ.	max.		

Identification-Signal Decoder

Gain filter op-amp	V_{6}	13	14	15	dB	$V_{\mathrm{IF}}=80 \mathrm{mVpp}$	1
Max. input voltage	V_{6}	600			mVpp	Function	2
VCO voltage PLL	V_{39}	1.3			V	$\begin{aligned} & f_{35}=14.6 \mathrm{kHz} ; \\ & V_{35}=2.5 \mathrm{~V} \end{aligned}$	2
VCO voltage PLL	V_{39}	2	3	4	V	$\begin{aligned} & f_{35}=15.625 \mathrm{kHz} ; \\ & V_{35}=2.5 \mathrm{~V} \end{aligned}$	2
VCO voltage PLL	V_{39}			4.7	V	$\begin{aligned} f_{35} & =16.6 \mathrm{kHz} ; \\ V_{35} & =2.5 \mathrm{~V} \end{aligned}$	2
VCO voltage PLL	V_{39}	1.3			V	$\begin{aligned} & f_{35}=58.4 \mathrm{kHz} ; \\ & V_{35}=2.5 \mathrm{~V} \\ & 00,40, \text { Line sync } \end{aligned}$	2 2
VCO voltage PLL	V_{39}			4.7	V	$\begin{aligned} & f_{35}=66.4 \mathrm{kHz} ; \\ & V_{35}=2.5 \mathrm{~V} \\ & 00,40, \text { Line sync } \end{aligned}$	
VCO voltage PLL	V_{39}	2	3	4	V	00,40, Line sync; Xtal	4

$$
V_{\text {ID filter }}=\frac{\sqrt{\left\langle V_{36}-V_{36}{ }^{*}\right\rangle^{2}+\left\langle V_{38}-V_{38}{ }^{*}\right\rangle^{2}}}{V_{6}} \quad \begin{aligned}
& V_{36} \text { or } V_{38} \text { when } V_{6}=0 \\
& V_{36}{ }^{*} \text { or } V_{38}{ }^{*} \text { when } V_{6}=100 \mathrm{mVpp} ; m=50 \%
\end{aligned}
$$

Gain identification- signal filter	$V_{\text {ISF }}$	3.4		6.8	dB	$f_{6}=$ pilot signal: dual $\mathrm{I}^{2} \mathrm{C}$-talk: dual	
Gain identification- signal filter	$V_{\text {ISF }}$	3.4		6.8	dB	$f_{6}=$ pilot signal: stereo; I2C-talk: stereo	

$V_{36 \text { test }}=V_{36}\left(V_{5}=0\right) \pm \Delta V_{36} ; V_{38 \text { test }}=V_{38}\left(V_{6}=0\right) \pm \Delta V_{38}$

| Detection threshold | ΔV_{36} | 900 | | mV | $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual
 $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Detection threshold | $-\Delta V_{36}$ | 900 | mV | | | |
| Detection threshold | ΔV_{38} | 900 | mV | $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual
 $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or
 dual | 3 | |
| Detection threshold | $-\Delta V_{38}$ | 900 | mV | | | |

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Mono threshold Mono threshold Mono threshold Mono threshold	$\left\lvert\, \begin{aligned} & \Delta V_{36} \\ & -\Delta V_{36} \\ & \Delta V_{38} \\ & -\Delta V_{38} \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\mathrm{I}^{2} \mathrm{C}$-talk: mono $\mathrm{I}^{2} \mathrm{C}$-talk: mono $\mathrm{I}^{2} \mathrm{C}$-talk: mono $\mathrm{I}^{2} \mathrm{C}$-talk: mono	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
Detection response Detection response	$t_{\text {det }}$ $t_{\text {det }}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & t_{\mathrm{MPX}} \\ & t_{\mathrm{MPX}} \end{aligned}$	$\mathrm{I}^{2} \mathrm{C}$-talk: stereo or dual; $\pm \Delta V_{36}=1 \mathrm{~V}$ $\mathrm{I}^{2} \mathrm{C}$-talk: stereo or dual; $\pm \Delta V_{38}=1 \mathrm{~V}$	3 3
Switching threshold $f_{\text {REF-input }}$ Switching threshold $f_{\text {REF-input }}$	$\begin{aligned} & V_{\mathrm{H}-\mathrm{IL}} \\ & V_{\mathrm{H}-\mathrm{IH}} \end{aligned}$	0 3.5		$\begin{aligned} & 1.5 \\ & V_{21} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		2 2
Amplitude crystal oscillator	$V_{35}{ }^{*}$		2		Vpp	$\text { to }=4.00000 \mathrm{MHz}$ Series rsonance	4
External 1-MHz or 4MHz clock	V_{35}		0.3		Vpp		3
Multiplexer clock Multiplexer clock Multiplexer clock Multiplexer clock	t_{MPX} $t_{\text {MPX }}$ t_{MPX} t_{MPX}		$\begin{aligned} & \hline 1.08 \\ & 2.17 \\ & 4.34 \\ & 8.68 \end{aligned}$		$\begin{array}{\|l} \hline \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{array}$	$\begin{aligned} & 09, \mathrm{C} 8, M P X=1 \mathrm{~s} \\ & 09,08, M P X=2 \mathrm{~s} \\ & 09,48, M P X=4 \mathrm{~s} \\ & 09,88, M P X=8 \mathrm{~s} \end{aligned}$	

Design-Related Data

Filter output resistance	$R_{36,38}$	110			$\mathrm{k} \Omega$		
$f_{\text {REF }}$ input resistance	R_{35}	800			Ω		
Input impedance crystal oscillator	Z_{35}	-600	-500	-400	Ω		
Crystal oscillator series resistance	$R_{\mathrm{Q} 1}$			100	Ω	$P_{\text {tot QU }}=1 \mu \mathrm{~W} ;$ 4 MHz	
Crystal oscillator series resistance	$R_{\mathrm{Q} 3}$	300			Ω	$P_{\text {tot QU }}=1 \mu \mathrm{~W} ;$ 12 MHz	
		20			dB	$P_{\mathrm{tot} \mathrm{QU}}=1 \mu \mathrm{~W} ;$ $f<15 \mathrm{MHz} ;$	

$I^{2} \mathrm{C}$ Bus (SCL, SDA)

Edges SCL, SDA							
Rise time Fall time	t_{R} t_{F}			1	$\mu \mathrm{~s}$		

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Shift register clock SCL Frequency H-pulse width L-pulse width	$\begin{aligned} & f_{\mathrm{SCL}} \\ & t_{\mathrm{H}} \\ & t_{\mathrm{L}} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 0 \\ 4 \\ 4 \end{array}$		100	kHz $\mu \mathrm{S}$ $\mu \mathrm{s}$		
Start Setup time Hold time	$t_{\text {SUSTA }}$ $t_{\text {HDSTA }}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$		
Stop Setup time Bus free	$t_{\text {SUSTO }}$ t_{BUF}	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$			$\begin{array}{\|l} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \hline \end{array}$		
Data change Setup time Hold time	$\begin{array}{\|l\|l} t_{\text {SUDAT }} \\ t_{\text {HDDAT }} \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 600 \end{array}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$		
Input SCL, SDA Input voltage Input current	$\begin{aligned} & V_{\mathrm{lH}} \\ & V_{\mathrm{lL}} \\ & I_{\mathrm{lH}} \\ & I_{\mathrm{IL}} \end{aligned}$	2.4		$\begin{array}{\|l\|} \hline 5.5 \\ 1 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$		
Output SDA (open collector) Output voltage Output voltage port 1 Output voltage port 1	V_{QH} $V_{Q L}$ $V_{15 \mathrm{H}}$ $V_{15 L}$ $V_{15 \mathrm{H}}$ $V_{15 \mathrm{~L}}$	5.4	$\begin{aligned} & V_{\mathrm{S}} \\ & V_{\mathrm{S}} \end{aligned}$	$\begin{gathered} 0.4 \\ 0.4 \\ 0.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=2.5 \mathrm{k} \Omega \\ & I_{\mathrm{QL}}=3 \mathrm{~mA} \\ & R_{\mathrm{L}}=2.5 \mathrm{k} \Omega ; 09,04 \\ & I_{\mathrm{QL}}=3 \mathrm{~mA} ; 09,00 \\ & \\ & R_{\mathrm{L}}=2.5 \mathrm{k} \Omega ; 02,02 \\ & I_{\mathrm{QL}}=3 \mathrm{~mA} ; 09,00 \end{aligned}$	$\begin{array}{\|l} 2 \\ 2 \\ 2 \\ 2 \end{array}$

Test Circuit 1

Test Circuit 2

Test Circuit 3

Test Circuit 4

Application Circuit 1

Application Circuit 2

$\mathbf{I}^{2} \mathbf{C}$ Bus Timing Diagram

$t_{\text {SUSTA }}$	Setup time (start)
$t_{\text {HDSTA }}$	Hold time (start)
t_{H}	H-pulse width (clock)
t_{L}	L-pulse width (clock)
$t_{\text {SUDAT }}$	Setup time (data change)
$t_{\text {HDDAT }}$	Hold time (data change)
$t_{\text {SUSTO }}$	Setup time (stop)
$t_{\text {BUF }}$	Bus free time
t_{F}	Fall time
t_{R}	Rise time

All times referred to V_{IH} and V_{IL} values.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

