

1080P Direct View LCD Training

Life's Good

Published September 10th, 2010

OUTLINE

Preliminary Section:

Contact Information, Preliminary Matters, Specifications, LCD Overview, General Troubleshooting Steps, Signal Distribution, Disassembly Instructions and Voltages

Disassembly Section: Removal of Circuit Boards

Troubleshooting Section: Board Operation Troubleshooting of :

- Switch Mode Power Supply
 - Inverter Boards Main and Secondary (LED Backlight Drivers)
 - Main Board
 - T-CON/3D Board
 - Ft Control Board
 - Soft Touch Keys
 - Speakers

Overview of Topics to be Discussed

47LX9500 LCD Direct View Display

Section 1

This Section will cover Contact Information and remind the Technician of Important Safety Precautions for the Customers Safety as well as the Technician and the Equipment.

Basic Troubleshooting Techniques which can save time and money sometimes can be overlooked. These techniques will also be presented.

This Section will get the Technician familiar with the Disassembly, Identification and Layout of the LCD Display Panel.

At the end of this Section the Technician should be able to Identify the Circuit Boards and have the ability and knowledge necessary to safely remove and replace any Circuit Board or Assembly.

Preliminary Matters (The Fine Print)

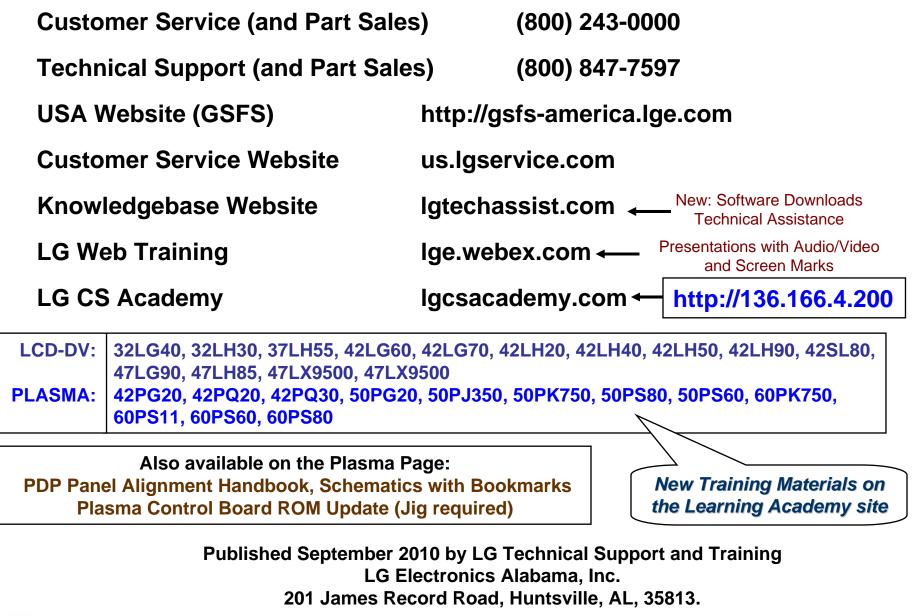
IMPORTANT SAFETY NOTICE

The information in this training manual is intended for use by persons possessing an adequate background in electrical equipment, electronic devices, and mechanical systems. In any attempt to repair a major Product, personal injury and property damage can result. The manufacturer or seller maintains no liability for the interpretation of this information, nor can it assume any liability in conjunction with its use. When servicing this product, under no circumstances should the original design be modified or altered without permission from LG Electronics. Unauthorized modifications will not only void the warranty, but may lead to property damage or user injury. If wires, screws, clips, straps, nuts, or washers used to complete a ground path are removed for service, they must be returned to their original positions and properly fastened.

CAUTION

To avoid personal injury, disconnect the power before servicing this product. If electrical power is required for diagnosis or test purposes, disconnect the power immediately after performing the necessary checks. Also be aware that many household products present a weight hazard. At least two people should be involved in the installation or servicing of such devices. Failure to consider the weight of an product could result in physical injury.

ESD Notice (Electrostatic Static Discharge)


Today's sophisticated electronics are electrostatic discharge (ESD) sensitive. ESD can weaken or damage the electronics in a manner that renders them inoperative or reduces the time until their next failure. Connect an ESD wrist strap to a ground connection point or unpainted metal in the product. Alternatively, you can touch your finger repeatedly to a ground connection point or unpainted metal in the product. Before removing a replacement part from its package, touch the anti-static bag to a ground connection point or unpainted metal in the product. Handle the electronic control assembly by its edges only. When repackaging a failed electronic control assembly in an anti-static bag, observe these same precautions.

Regulatory Information

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: Reorient or relocate the receiving antenna; Increase the separation between the equipment and the receiver; Connect the equipment to an outlet on a different circuit than that to which the receiver is connected; or consult the dealer or an experienced radio/TV technician for help.

Contact Information

6

September LCD TV 47LX9500

LCD Direct View Overview

Safety and Handling Regulations

- 1. Approximately 20 minute pre-run time is required before making any picture performance adjustments from the Menu.
- 2. Refer to the Voltage/Current silk screening on the Switch Mode Power Supply.
- 3. C-MOS circuits are sensitive to static electricity. Use caution when dealing with these IC and circuits.
- 4. Exercise care when making voltage and waveform checks to prevent costly short circuits from damaging the unit.
- 5. Be cautious of lost screws and other metal objects to prevent a possible short in the circuitry.

Checking Points to be Considered

- 1. Check the appearance of the Replacement Panel and Circuit Boards for both physical damage and part number accuracy.
- 2. Check the model label. Verify model names and board model matches.
- 3. Check details of defective condition and history. Example: Oscillator failure dead set, etc...

Basic Troubleshooting Steps

Define, Localize, Isolate and Correct

•Define Look at the symptom carefully and determine what circuits could be causing the failure. Use your senses Sight, Smell, Touch and Hearing. Look for burned parts and check for possible overheated components. Capacitors will sometimes leak dielectric material and give off a distinct odor. Frequency of power supplies will change with the load, or listen for relay closing etc. Observation of the front Power LED may give some clues.

•Localize After carefully checking the symptom and determining the circuits to be checked and after giving a thorough examination using your senses the first check should always be the DC Supply Voltages to those circuits under test. Always confirm the supplies are not only the proper level but be sure they are noise free. If the supplies are missing check the resistance for possible short circuits.

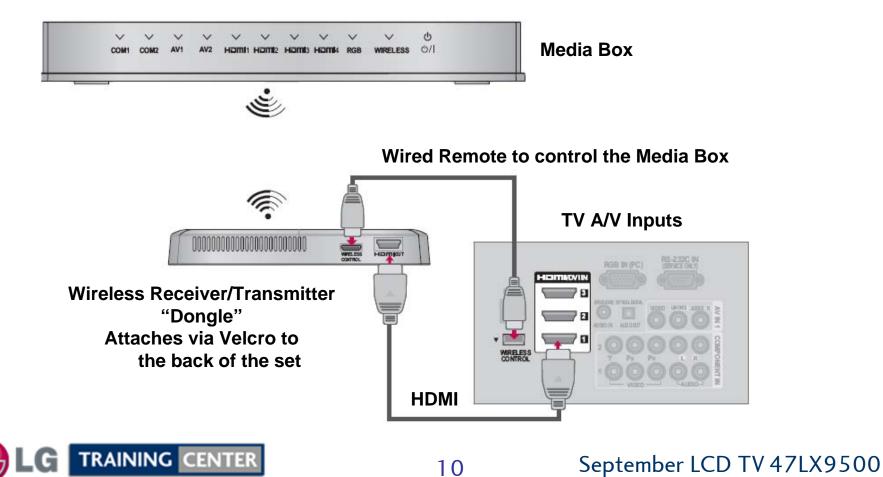
•**Isolate** To further isolate the failure, check for the proper waveforms with the Oscilloscope to make a final determination of the failure. Look for correct Amplitude Phasing and Timing of the signals also check for the proper Duty Cycle of the signals. Sometimes "glitches" or "road bumps" will be an indication of an imminent failure.

•<u>Correct</u> The final step is to correct the problem. Be careful of ESD and make sure to check the DC Supplies for proper levels. Make all necessary adjustments and lastly always perform a Safety AC Leakage Test before returning the product back to the Customer.

47LX9500 PRODUCT INFORMATION SECTION

This section of the manual will discuss the specifications of the 47LX9500 LCD Direct View Display

9

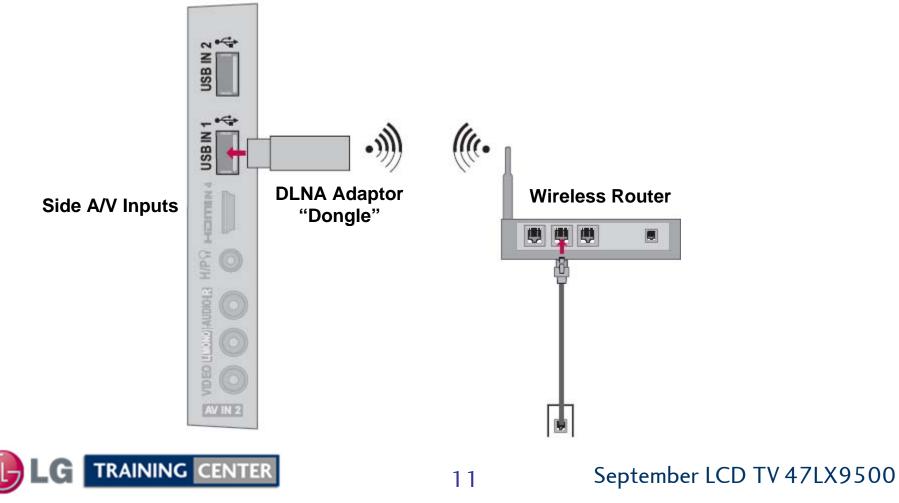

September LCD TV 47LX9500

Wireless Media Box

Wireless Media Box (Sold Separately)

The Wireless Media box communicates to the television via a wireless receiver called a "Dongle". The Dongle attaches to the Television via two connections:

- 1. HDMI Cable from the Dongle to the TV to transfer Audio and Video Signals.
- 2. Wired Remote cable between the TV and Dongle for Control Functions.



Wireless LAN (DLNA Adaptor)

Wireless LAN (Sold Separately)

Using the LG Wireless LAN for Broadband/1DLNA Adaptor, which is sold separately, allows the TV to connect to a wireless LAN network. The DLNA adaptor attaches to the Television via either of the two USB connections:

1(DLNA: Digital Living Network Alliance)

Basic Specifications

Key TV Features

- INFINIA Series*
- 3D Ready
- Full LED Slim w/Local Dimming
- THX Certified Display
- NetCast[™] Entertainment Access^{*}
- (Wi-Fi® Ready)
- Wireless 1080p Ready*
- DLNA Certified®
- TruMotion 480Hz
- Full HD 1080p Resolution
- 10M:1 Dynamic Contrast Ratio
- Seamless Design
- Picture Wizard II
- (Easy Picture Calibration)
- Smart Energy Saving
- Magic Motion Remote Control

- Easy Picture Calibration
- ENERGY STAR® Qualified
- XD Engine
- Intelligent Sensor
- AV Mode II (Cinema, Sports, Game)
- Clear Voice II
- ISFccc® Ready
- 24P Real Cinema
- USB 2.0 (JPEG, MP3, DivX HD)
- DivX® HD
- 4 HDMI[™] V.1.4 Inputs
- SIMPLINK[™] Connectivity
- Dolby® Digital 5.1 Decoder
- Infinite Sound

Logo Familiarization Page 1 of 4

INF)NIA

New definition television. LG's INFINIA TVs are redefining home entertainment. Even beyond their jaw-dropping design, they offer access to virtually unlimited entertainment through broadband connectivity and freedom with wireless HD capability.

You don't have to take our word for it that this is an amazing TV. To earn THX certification, our TV's passed more than 30 rigorous tests, ensuring you're bringing an uncompromised HD experience home - as the director wanted it.

Entertainment on tap. NetCast Entertainment Access brings the best Internet services direct to your TV—no computer required. Instantly access movies and TV shows, news and weather and the world's largest library of HD movies in 1080p.

Logo Familiarization Page 2 of 4

FULL HD RESOLUTION 1080P HD Resolution Pixels: 1920 (H) \times 1080 (V) Enjoy twice the picture quality of standard HDTV with almost double the pixel resolution. See sharper details like never before. Just imagine a Blu-ray disc or video game seen on your new LG Full HD 1080p TV.

HDMI (1.3 Deep Color) Digital multi-connectivity

HDMI (1.3 Deep color) provides a wider bandwidth (340MHz, 10.2Gbps) than that of HDMI 1.2, delivering a broader range of colors, and also drastically improves the data-transmission speed.

Invisible Speaker

Personally tuned by Mr. Mark Levinson for LG

TAKE IT TO THE EDGE newly introduces 'Invisible Speaker' system, guaranteeing first class audio quality personally tuned by Mr. Mark Levinson, world renowned as an audio authority. It provides Full Sweet Spot and realistic sound equal to that of theaters with its Invisible Speaker.

AV Mode "One click" Cinema, THX Cinema, Sport, Game mode. TAKE IT TO THE EDGE is a true multimedia TV with an AV Mode which allows you to choose from 4 different modes of Cinema, Sports and Game by a single click of a remote control.

Logo Familiarization Page 3 of 4

Clear Voice Clearer dialogue sound

Automatically enhances and amplifies the sound of the human voice frequency range to provide high-quality dialogue when background noise swells.

Save Energy, Save Money

It reduces the plasma display's power consumption. The default factory setting complies with the Energy Star requirements and is adjusted to the comfortable level to be viewed at home. (Turns on Intelligent Sensor).

Save Energy, Save Money

Home electronic products use energy when they're off to power features like clock displays and remote controls. Those that have earned the ENERGY STAR use as much as 60% less energy to perform these functions, while providing the same performance at the same price as less-efficient models. Less energy means you pay less on your energy bill. Draws less than 1 Watt in stand by.

TruMotion 480Hz

the world's first "TruMotion 480Hz" panel, a combination of LG's existing 240Hz technology with a new "scanning backlight" capable of being rapidly switched on and off. When combined with the 240Hz system it results in 480 images being displayed per second. A higher refresh rate generally makes for smoother video and less blur, especially in fast moving footage such as sports. Also bringing the response times down to 4ms, and the controllable backlight leads to both improved contrast and, when dimmed, energy savings.

Logo Familiarization Page 4 of 4

Wireless Ready

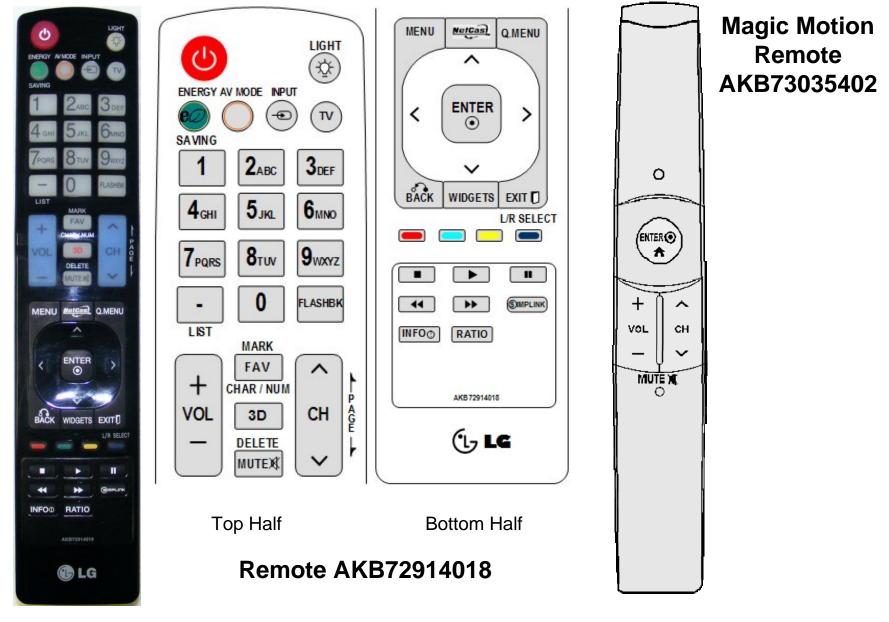
Wireless 1080p Connectivity lets you cut loose from messy wires and still get a stunning Full HD picture. Disclaimer: Wireless media kit required and sold separately.

Picture Wizard

Get easy self-calibration with on-screen reference points for key picture quality elements such as black level, color, tint, sharpness and backlight levels. Take the guesswork out of picture adjustments with this simple-to-use feature. It's not actually magic, but it will sure seem that way.

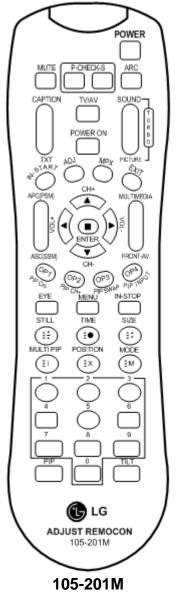
Seamless Design

You'll love the stunning picture while it's on and marvel at its appearance while it's off. The display is a seamless, edge-to-edge panel of glass over an ultra-slim, almost unnoticeable bezel. It's a sleek, elegant, virtually border-free design that will appeal to even the most refined sense of style.



Magic Motion Remote Control

With the wave of your hand, operate the onscreen menus using the Magic Motion Remote.



47LX9500 Remote Controls

September LCD TV 47LX9500

Accessing the Service Menu

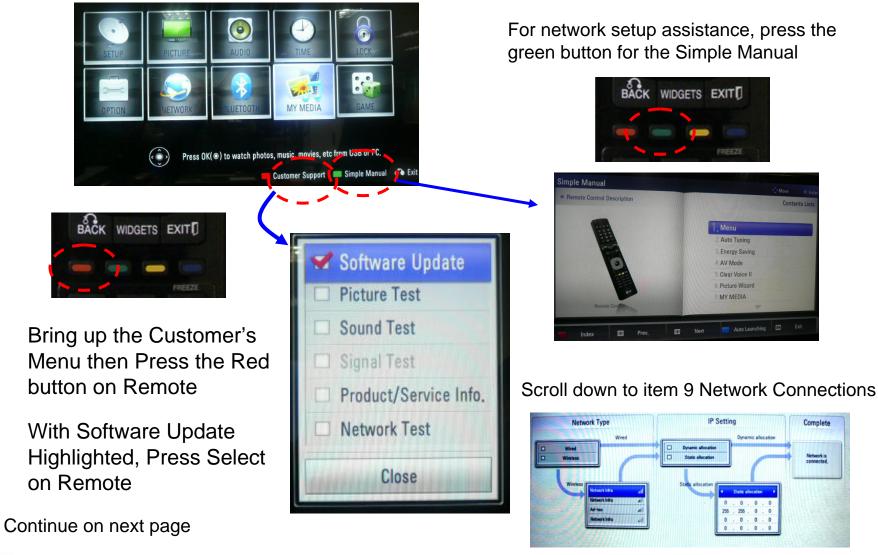
To access the Service Menu.

- 1) You must have either Service Remote. p/n 105-201M or p/n MKJ39170828
- 2) Press "In-Start"
- 3) A Password screen appears.
- 4) Enter the Password.

Note: A Password is required to enter the Service Menu. Enter; **0000**

Note: If 0000 does not work use 0413.

MKJ39170828

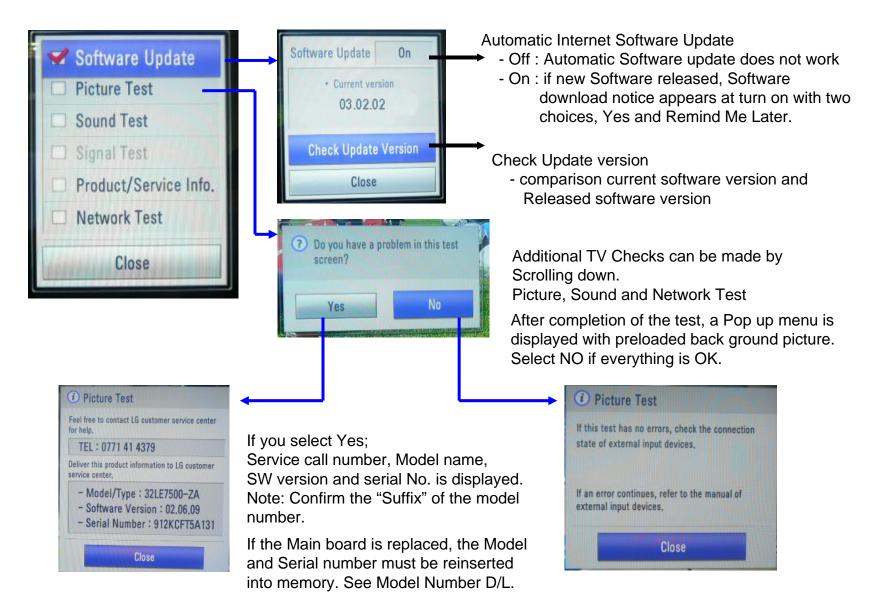


September LCD TV 47LX9500

TV Rear Input / Output Jacks Side In/Out USB1 or USB2 for Software Upgrades, Wireless Dungle, **Music and Photos Rear In/Out Jacks** Manufactured under license from Dolby Laboratories. "Dolby" and the double-D USB 2 mbol are trademarks of Dolby Laboratories. LAN **RS-232C IN** RGB IN (PC) (CONTROL & SERVICE) HOMI/DVI IN LAN VIDEO LIMONOJ-AUDIO USB 1 ----**Component or** ANTENNA WIRELESS (DVI) CONTROL Composite Video/Audio 3 Head Wireless Media Box **Phones Remote Jack MAIN BOARD Rear and Side** Input/Output locations HDMI 4 TRAINING CENTER September LCD TV 47LX9500 19

Software Updates (New and Changed Functions)

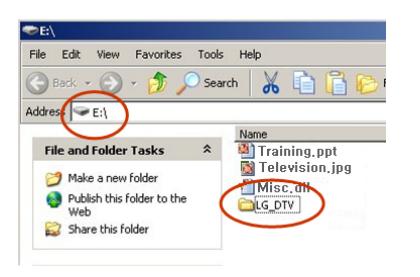
A wireless Internet Connection will work for Automatic Software Downloads., however if there are problems completing download, a Wired Internet Connection is preferred

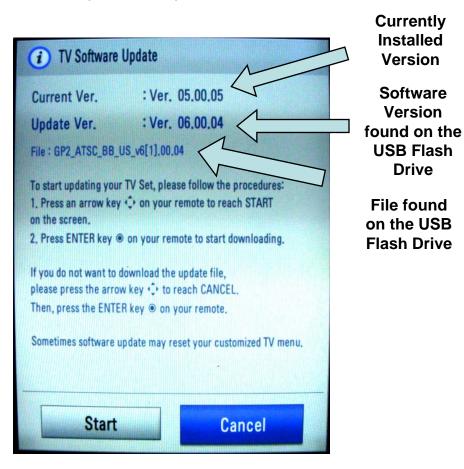


September LCD TV 47LX9500

Complete

Network is connected.


Software Updates (New and Changed Functions) Continued


USB Automatic Software Download Instructions (Generic)

1) Create an LG_DTV folder on the USB Flash Drive

- 2) Copy new software (xxx.epk) to "LG_DTV" folder. Make sure to have correct software file.
- 3) With TV turned on, insert USB flash drive.
- 4) You can see the message
 - "TV Software Upgrade" (See figure to right)
- 5) Cursor left and highlight "START" Button and push "Enter" button using the remote control.
- 6) You can see the download progress Bar.
- 7) Do not unplug until unit has automatically restarted.
- 8) When download is completed, you will see "COMPLETE".
- 9) Your TV will be restarted automatically.

* CAUTION:

Do not remove AC power or the USB Flash Drive. Do not turn off Power, during the upgrade process.

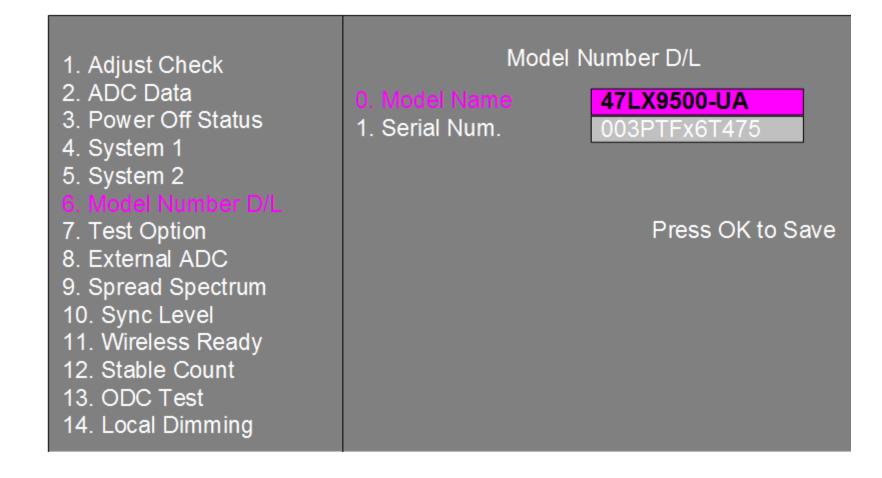
Software Files are now available from LGTechassist.com


Manual Software Download Instructions: Generic

Prepare the Jump Drive as described in the "USB Automatic Download" section and insert it into either of the USB ports. Bring up the Customer's Menu and scroll to "OPTIONS".

Press the "FAV" key 7 times to bring up the Manual Download Screen.

Highlight the Software update file and press "SELECT" to begin the download process.


> Example of files found On the Jump Drive

Service Menu: Adding the Model and Serial Number

Bring up the Service Menu using the Service Remote. Scroll down to item 6. Model Number D/L to highlight. Press "Select" or "Cursor Right". Change the Model and Serial Number to match. To Change the Model Number Use the cursor right or left to select the area to change. Use the cursor up or down to change. Cursor right until there is no text cursor blinking. Scroll down to highlight "Serial Number" and change.

Service Menu: Downloading EDID Data Pg 1 of 2

1) Press "ADJ" key.

2) Select menu, Either "PCM EDID D/L" or AC3 EDID D/L

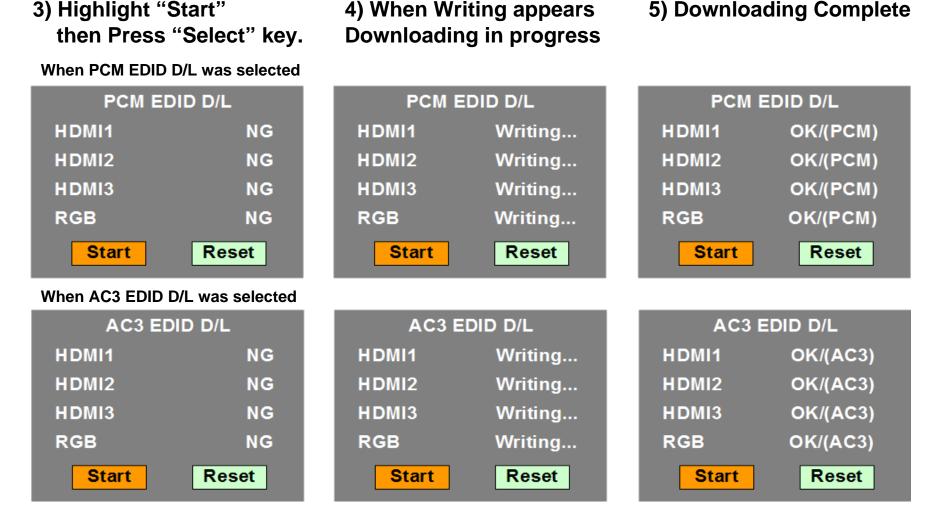
EZ ADJUST

0. Tool Option

Tool Option2
 Tool Option3
 Tool Option4
 Tool Option5
 Country Group
 ADC Calibration
 White Balance
 10 Point WB
 Test Pattern
 PCM EDID D/L
 AC3 EDID D/L
 Sub B/C

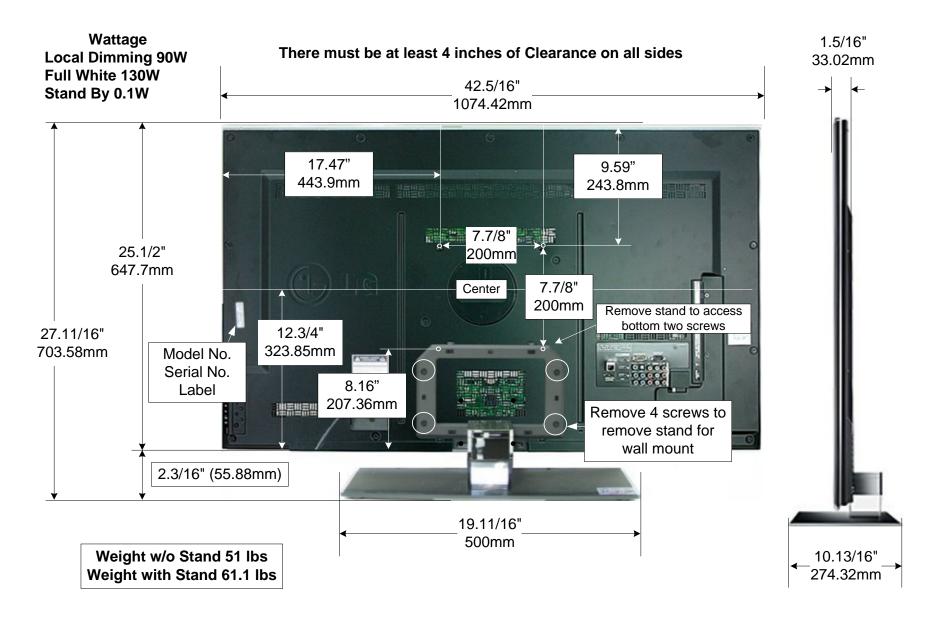
EZ ADJUST

- 0. Tool Option1
- 1. Tool Option2
- 2. Tool Option3
- 3. Tool Option4
- 4. Tool Option5
- 5. Country Group 6. ADC Calibration
- 7. White Balance
- 8. 10 Point WB
- 9. Test Pattern
- 10. PCM EDID D/L
- 11. AC3 EDID D/L
- 12. Sub B/C


EZ ADJUST

- 0. Tool Option1
- 1. Tool Option2
- 2. Tool Option3
- 3. Tool Option4
- 4. Tool Option5
- 5. Country Group
- 6. ADC Calibration
- 7. White Balance
- 8. 10 Point WB
- 9. Test Pattern
- 10. PCM EDID D/L
- 11. AC3 EDID D/L

12. Sub B/C

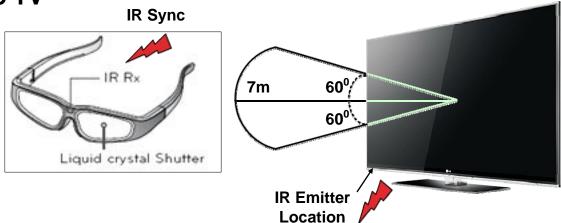

Service Menu: Downloading EDID Data Pg 2 of 2

Note: When PCM is downloaded, AC3 will be N/G and when AC3 is downloaded PCM will be N/G. This means that when PCM is OK, PCM audio is priority and when AC3 is OK, AC3 audio is priority.

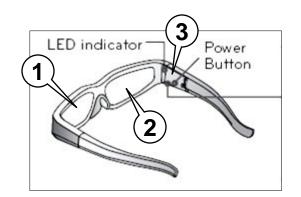
47LX9500 Product Dimensions

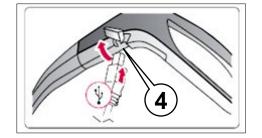
3D

This section of the manual will discuss the 47LX9500 LCD Direct View Television ability to play 3D material.


Upon completion of this section the Technician will have a better understanding of the how 3D works.

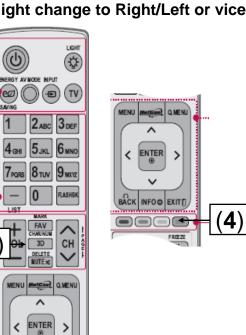
LG 3D Emitter & Glasses

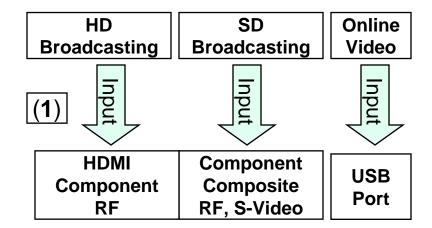

Convenient Emitter built-in to TV

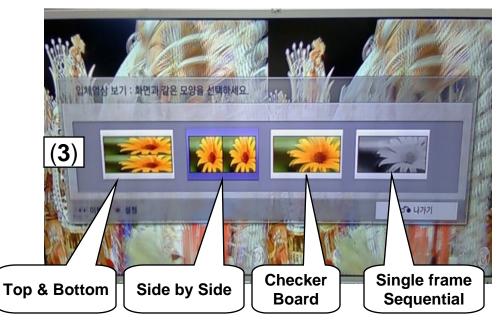

- Wider viewing angle
- Longer Viewing distance
- Longer battery life (1.5h charging / 40h battery life)
- Better sync performance

User friendly Glasses

- 1) L-frame for glasses users
- 2) UV coating to prevent scratch
- 3) LED indicator for user convenience
- 4) Easy to Recharge with USB port

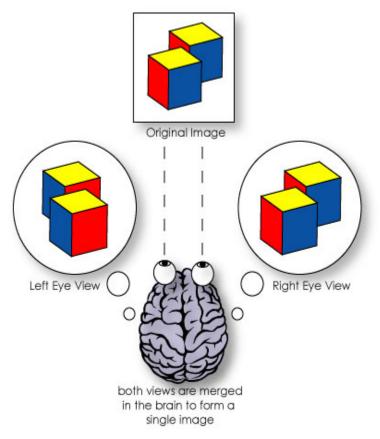



LG 3D TV 3D broadcasting


3D for All types of broadcasting signals

- 1. Input of broadcasting signal
- 2. Press "3D" button for mode change
- 3. Select type of input source
- 4. In case 3D looks *abnormal, press "L/R Select" on remote and select "R/L".

*Abnormality may be caused by reversed L/R order of the input signal. If TV already in Left/Right change to Right/Left or vice versa.



September LCD TV 47LX9500

3D Fundamentals

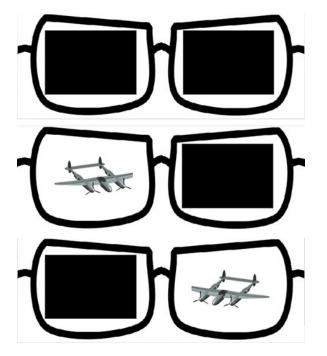
Each eye looks at an image for slightly different angles. Therefore, the brain takes these two different images and translates them into one image giving us depth perception. This is difficult to reproduce on a 2 dimensional screen. We have to come up with a scheme that will allow us to see the same image from two different angles giving us 3D effects.

If the two images were added together without the brain doing the calculations to combine them, they appear out of focus.

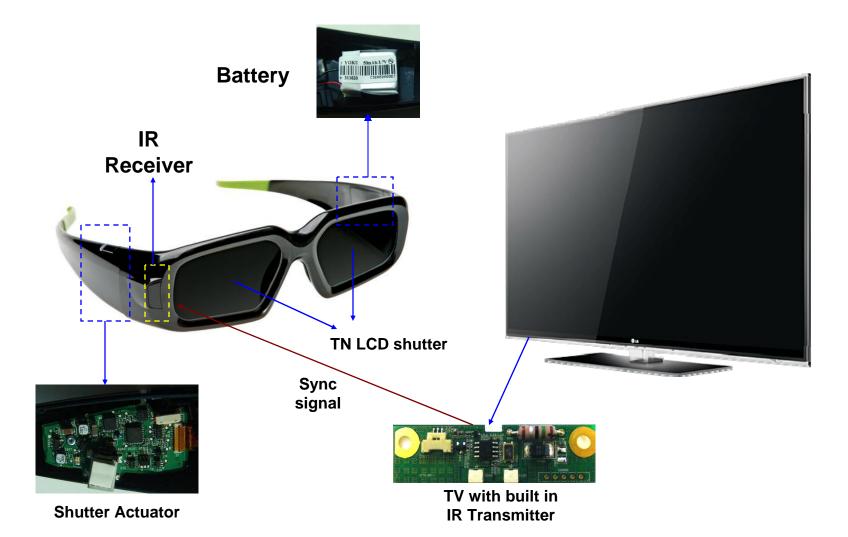
Note: The Left and Right eye are actually seeing the same image but from a different angle, but for this explanation one is shown inverted from the other for clarity purposes simply to show there is a difference between the two images seen by each eye.

3D Active Glasses Type

Shutter glasses type 3D: Separating left and right images by synchronizing the TV and the glasses


< Shutter glasses 3D >

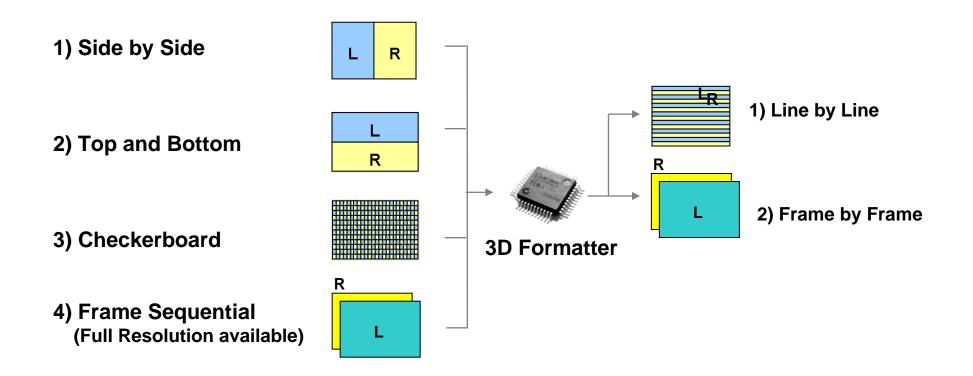
The image is broadcast using two different viewing angles every other frame.



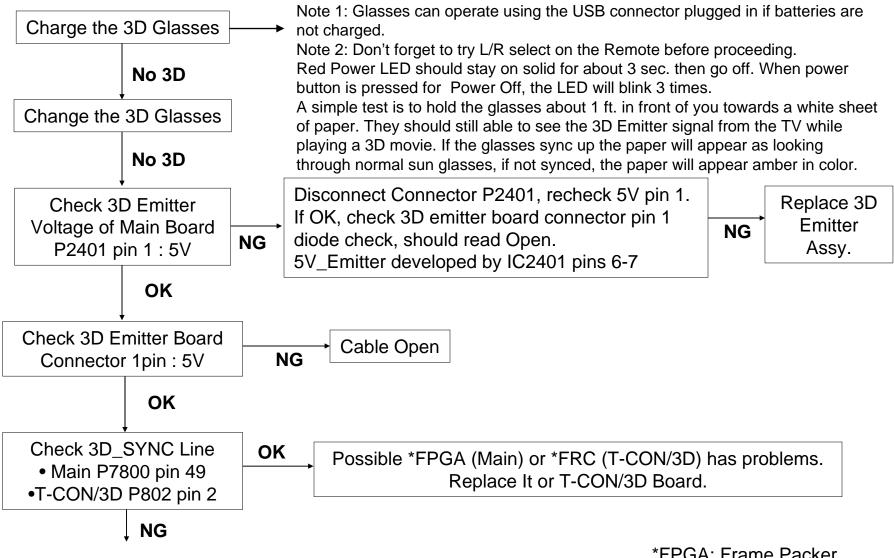
Fundamentals of Shutter glasses

The 3D Glasses are then synchronized with the two different images to give the 3D effect. They are blanked between scene changes.

Active glasses 3DTV components

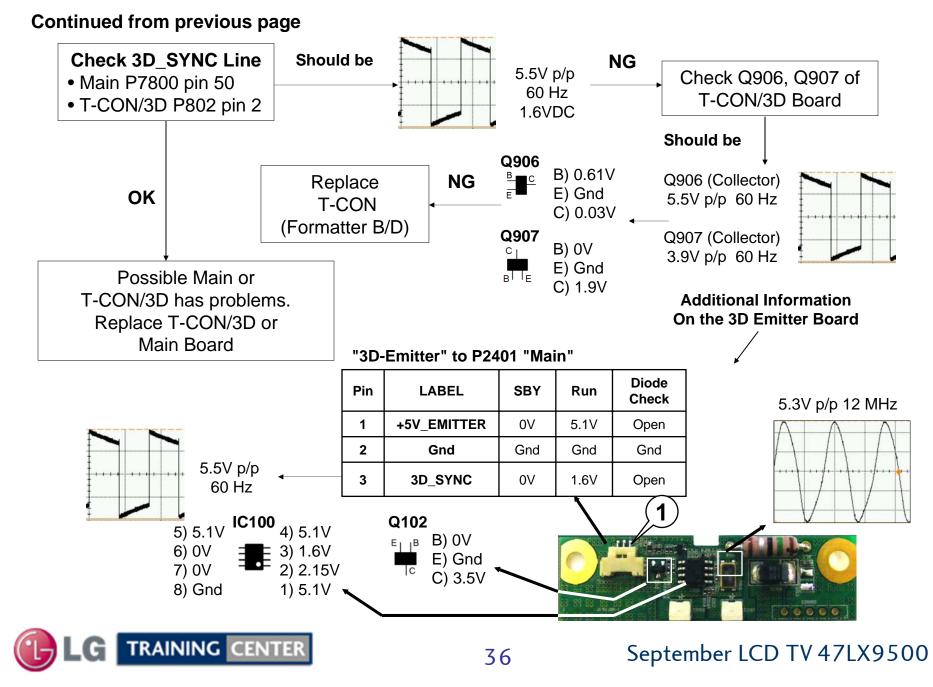


September LCD TV 47LX9500


T-CON with 3D Formatter

- **3D Formatter**
 - All Formats of input available and conversion technology development
 - Full HD input available
 - 3D Enhancement

3D Troubleshooting: 3D Not Working PG 1



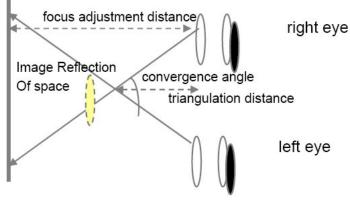
*FPGA: Frame Packer *FRC: Frame Rate Converter

3D Troubleshooting: 3D Not Working Pg 2

Eye Tiredness Information

Why your eyes get tired while you're seeing 3D images :

- The color clarity and resolution of 3D images are lower than those of 2D.
- 3D images deliver strong effects. Viewing "popping out" images, which is distorted, for a long time makes you more tired.
- Accommodation and convergence (Your both eyes focus a single point)
- 3D presentation with glasses displays unnatural images due to no time difference during eye movements.

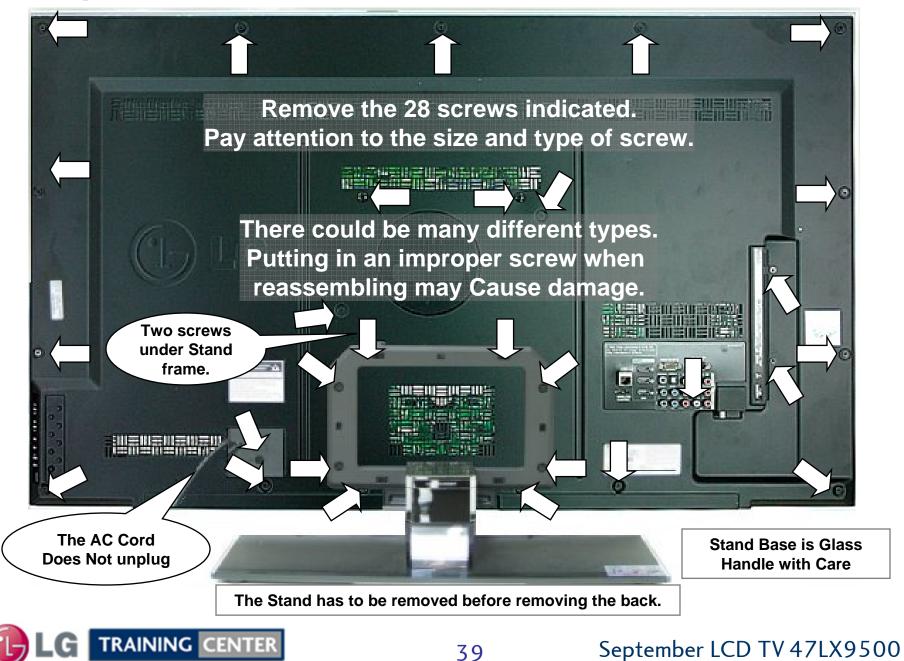

3DC safety guidelines for distribution of 3D displays suitable for human eyes were made at the 3D Consortium 2006

- It is recommended to see 3D images within a distance of 2m.
- The brain is not able to adjust the focus when you are more than 2m away from the TV.
- Customers don't have the condition for seeing a display within 2m, below warning sentence should be noticeable.

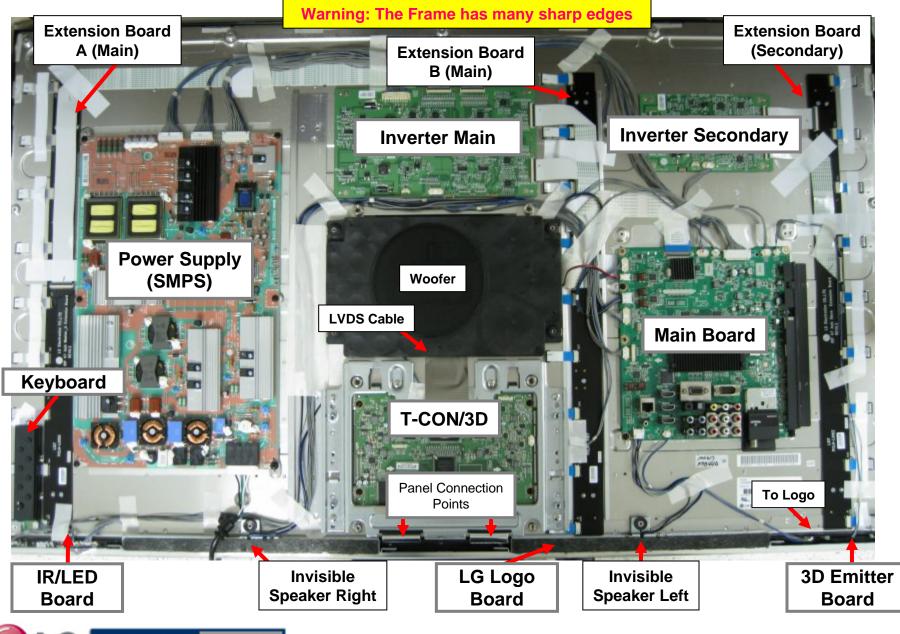
If it is impossible for customer to view 3D image displayed on the screen 2m away from the display, keep in mind that the convergence angle should not exceed 2 degrees.

• For example, when you see the display 1m away from the TV, the distance of any 3D image popping out should be within 38cm.

The brain gets confused because of the distance difference between the actual image and the popping up image. DISASSEMBLY SECTION

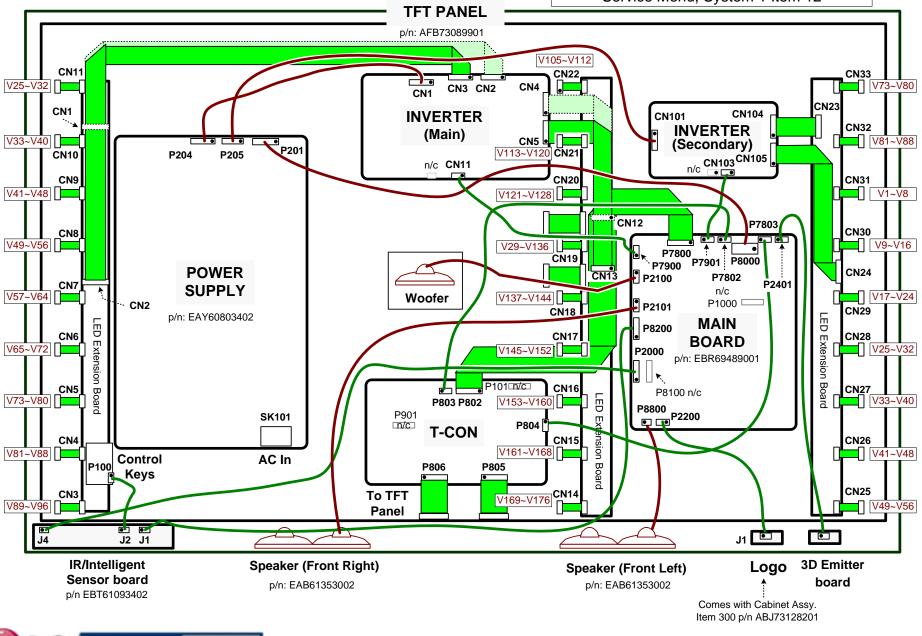

Disassembly:

This section of the manual will discuss Disassembly, Layout (Circuit Board Identification) of the 47LX9500 LCD Direct View Television.


Upon completion of this section the Technician will have a better understanding of the disassembly procedures, the layout of the printed circuit boards and be able to identify each board.

Removing the Back Cover

Circuit Board Layout

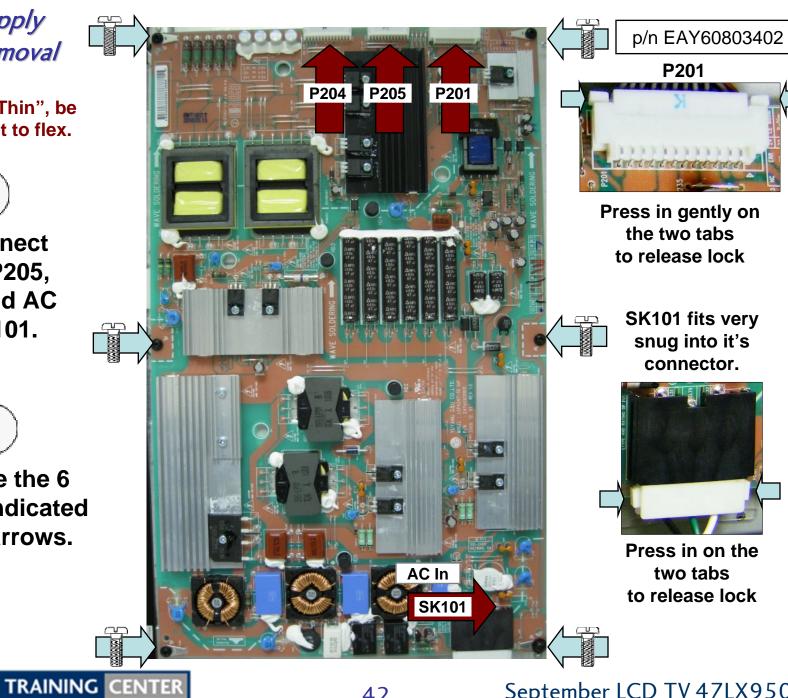


September LCD TV 47LX9500

47LX9500 Connector Identification Diagram

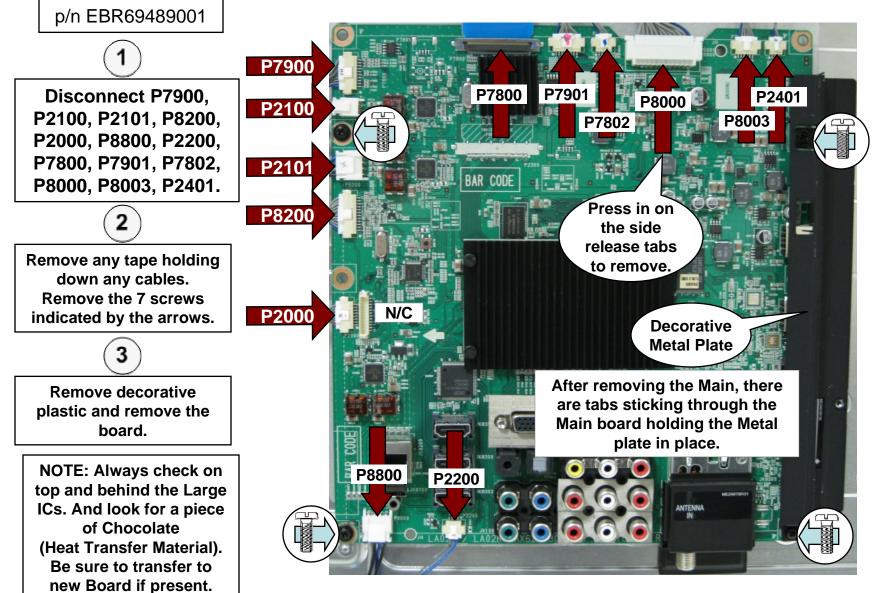
If the Panel is replaced, reset the UTTTime. Service Menu, System 1 Item 12

September 2010 47LX9500 LCD-DV


Board is "Thin", be careful not to flex.

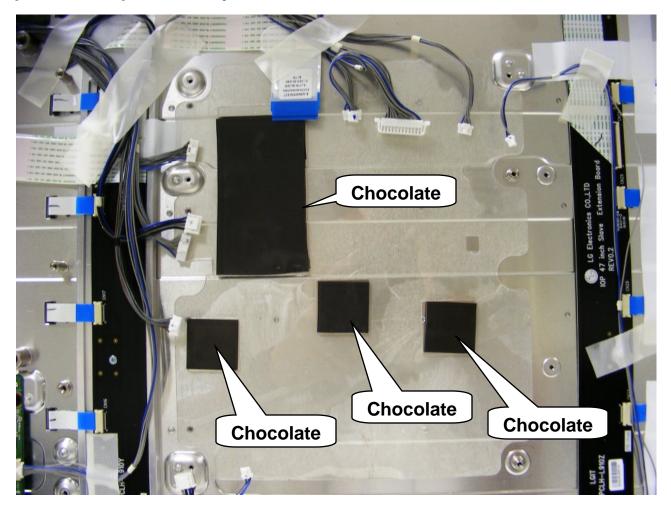
Disconnect P201, P205, P204 and AC In SK101.

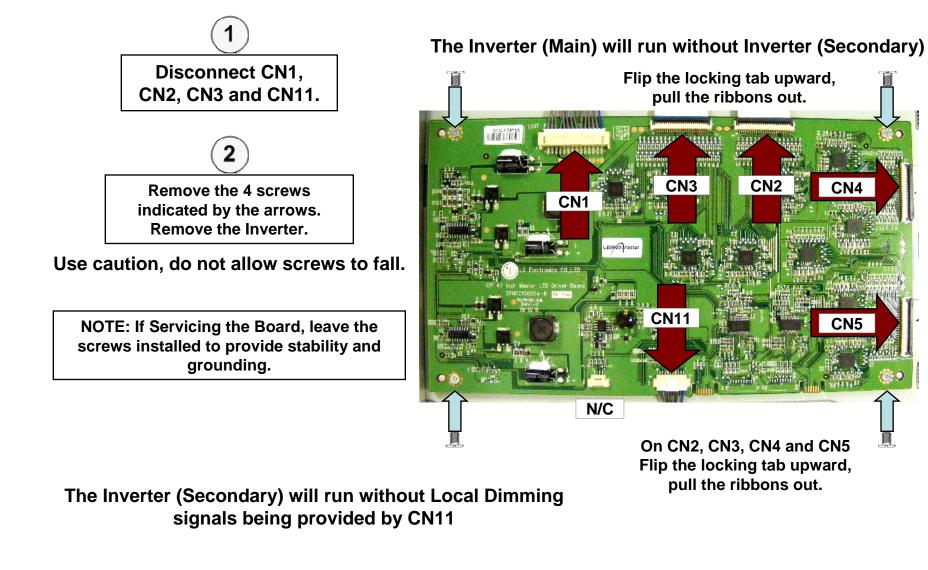
Remove the 6 screws indicated by the arrows.



September LCD TV 47LX9500

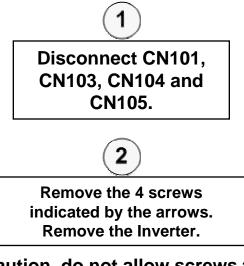
Removing the Main Board


Flip the locking tab upward, pull the LVDS ribbon out.


Removing the Main Board notice

Note: Behind the Main board are pieces of Chocolate (Heat transfer material). Be sure to replace these pieces if any should fall.

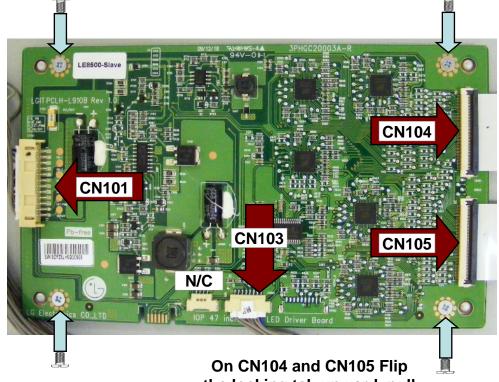
Removing the Inverter (Main) Board


45

September LCD TV 47LX9500

CN2

CN5


Removing the Inverter (Secondary) Board

Use caution, do not allow screws to fall.

NOTE: If Servicing the Board, leave the screws installed to provide stability and grounding.

The Inverter (Secondary) will run without Inverter (Main)

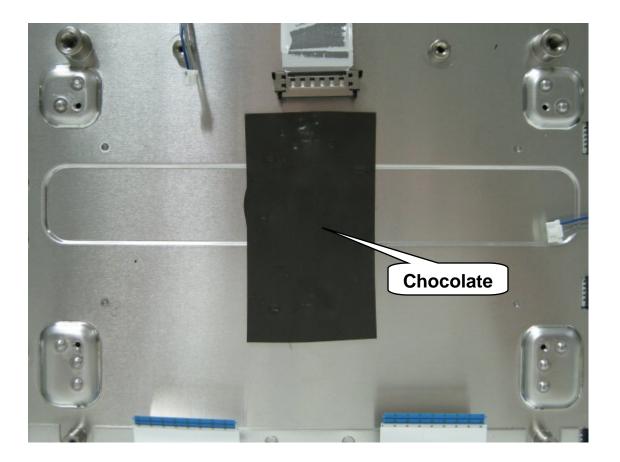
On CN104 and CN105 Flip the locking tab upward, pull the ribbons out.


The Inverter (Secondary) will run without Local Dimming signals being provided by CN103

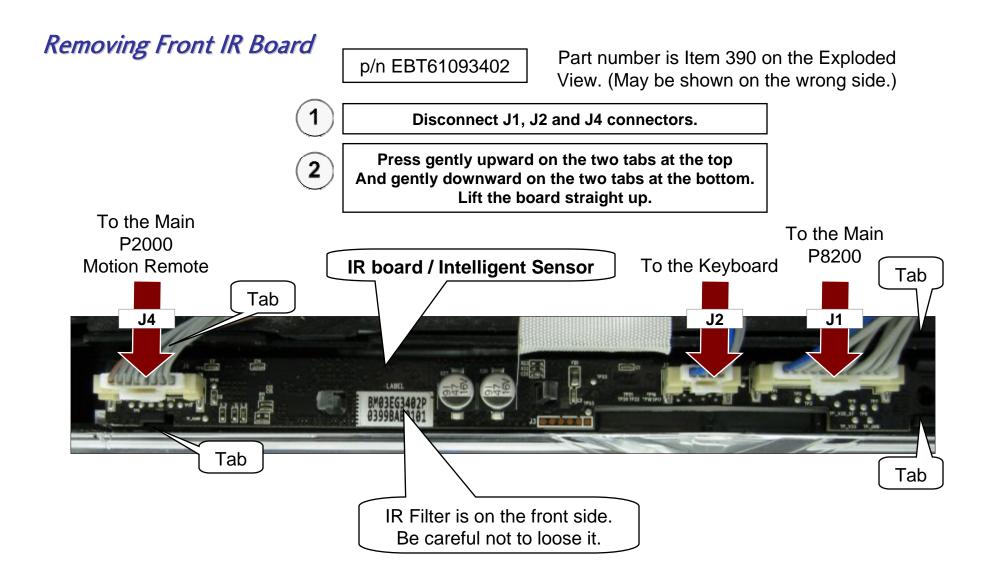
Removing the T-CON/3D Board

1. Lay the TV down on its face. Use some scratch resistant material to avoid damaging the front frame.

2. Remove the stand support bracket that surrounds the T-CON/3D board. (6 screws) See Fig. 1.


Flip up the Locking mechanism to release ribbon cable.

September LCD TV 47LX9500


Removing the T-CON/3D Board Notice

Note: Behind the T-CON/3D is a piece of Chocolate (Heat transfer material). Be sure to replace this piece if it should fall.

September LCD TV 47LX9500

TROUBLESHOOTING SECTION

Troubleshooting:

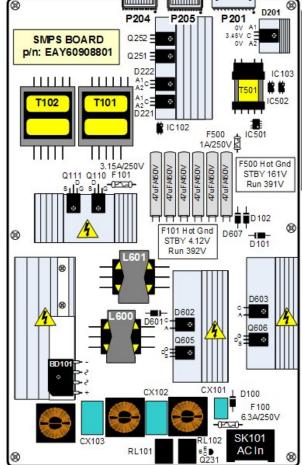
This section of the manual will discuss troubleshooting.

Upon completion of this section the Technician will have a better understanding of how to diagnosis and resolve problems.

POWER SUPPLY SECTION

This switch mode power supply develops Stand By 3.5V at all times when AC is applied. At power on, it develops 12V and 24V for the Main board And 24V for the Inverters.

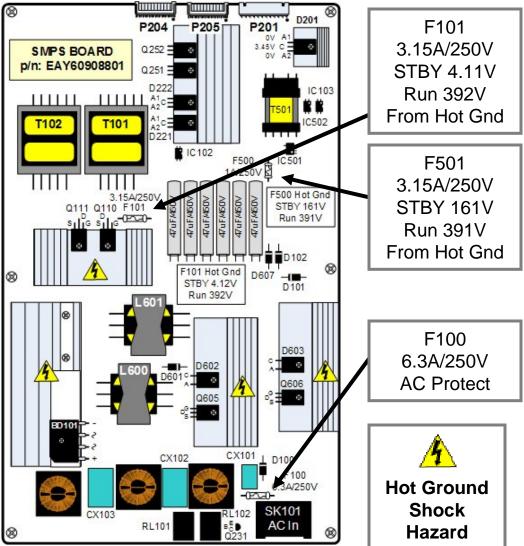
This power supply draws less than 1 watt during stand by mode. The fuse F500 reads 161V (from hot ground) during this time. (F101 is 4.12V)


When the controller chip receives the PWR-ON command 3.3V via P201 Pin 1, the primary section increases its current supplying ability. Both Primary fuses F101 and F500 now read a little more than 391~2V.

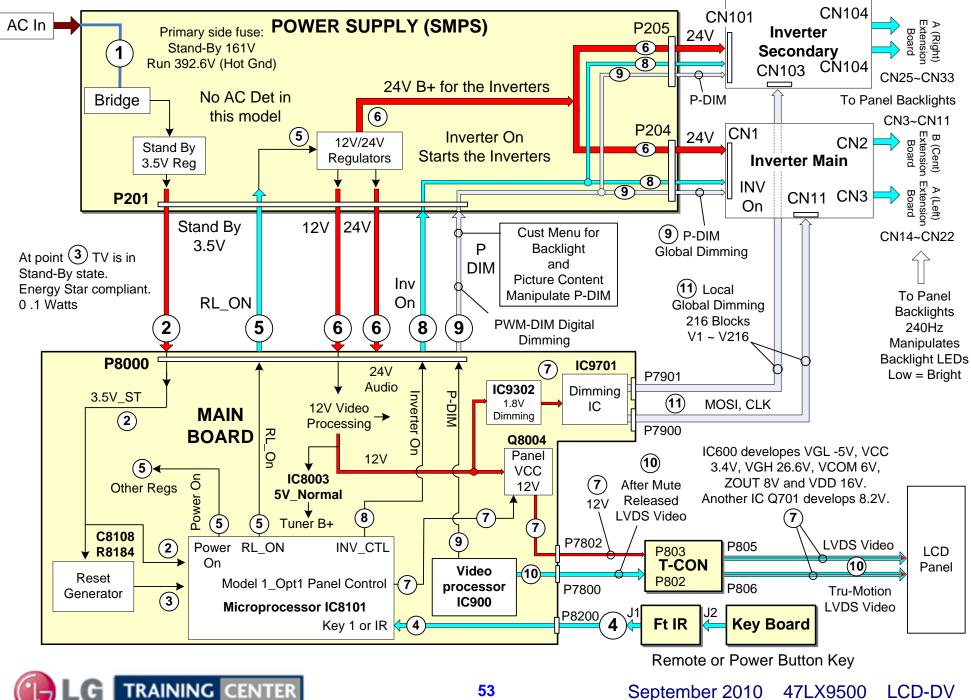
P201 Connector: (To Main Board) 12V is routed out P201 pins 17, 19 and 21 and 24V is routed out P201 pins 2, 3 and 4.

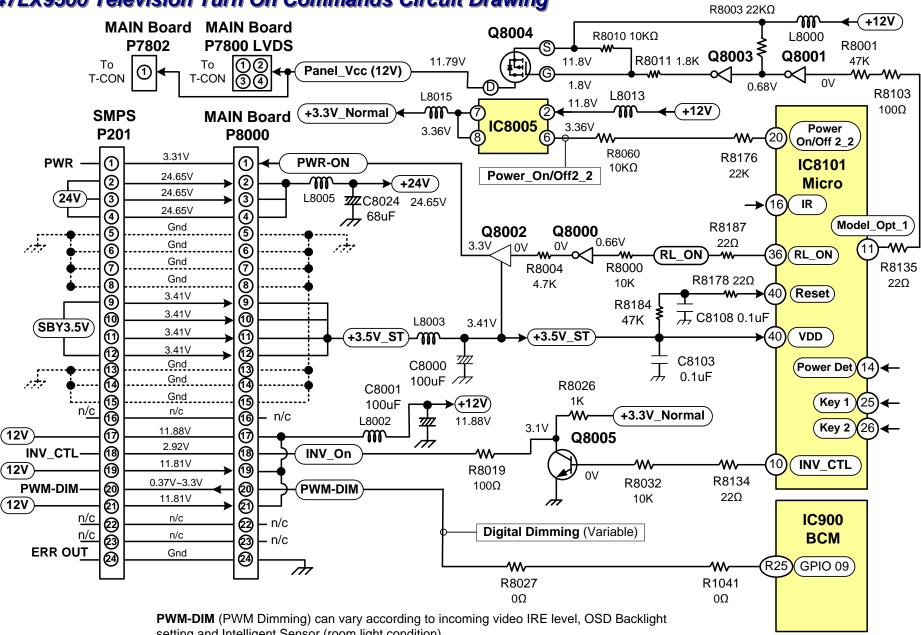
P204 Connector: (To Inverter Main Board) 24V is routed out P204 pins 1 through 5.

P205 Connector: (To Inverter Secondary Board) 24V is routed out P205 pins 1 through 5.



Power Supply (SMPS) Board Layout


p/n EAY60908801



47LX9500 Television Start Up Sequence

47LX9500 Television Turn On Commands Circuit Drawing

setting and Intelligent Sensor (room light condition). Range 0.37V to 3.3V.

Power Supply Board Low Voltage Test 1

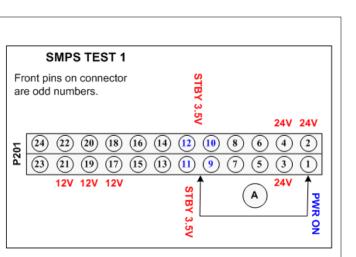
AC Should not be applied at any time while adding jumpers or While unplugging connectors as damage to the circuit Board may occur.

a) When AC is applied, the SMPS "MUST" be producing STBY 3.5V on pins 9, 10, 11 or 12 of P201.

If 3.5V Standby is not being generated, the SMPS is defective and must be replaced. There is no need to continue with the next test.

But, make sure AC is arriving at the connector SK101.

(b) Unplug P8000 on the Main Board to make insertion of the Jumpers easier. Use P700 Side to insert resistors


TEST 1:

No Backlights during this test

- (1) Add a jumper between (3.5V STBY) pin 7, 8, 9 or 10 and Pin 1 (PWR_ON). Apply AC. This will turn on the power supply, relays will click.
 - a) Check that the 24V and 12V power supplies are turned on,
 - P201 (12V pins 17, 19 and 21)
 - P201 (24V pins 2, 3 and 4)
 - P204 and P205 (24V pins 1 through 5) to the Inverters

(2) Remove AC power

55

Pin 1 is the Brown Wire

Power Supply Board Backlights Test 2

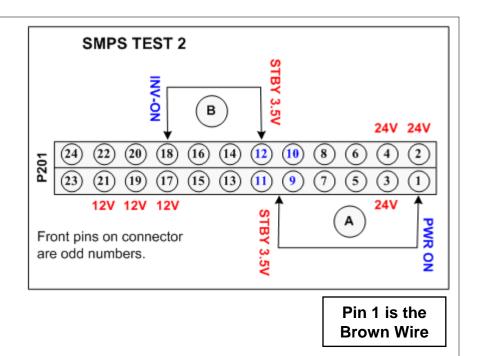
Continue if the 1st test was OK. Leave original jumper in place.

- (3) Add another jumper between (STBY_3.5V) pin 9, 10, 11 or 12 and Pin 18 (INV_On).
- (4) Apply AC Power. Simulating a Power and Backlight On command.

Backlights Normal:

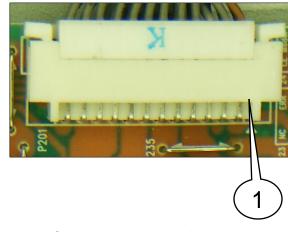
a) If normal, the backlights should turn on. SMPS OK, Inverter OK.

Backlights Abnormal:


- a) Recheck all connections.
- b) Confirm the INV On/Off line pulling up to at least 3V and arriving at both Inverters.
- c) Check the connections to the Inverters.
- If the 24V and the Inverter On command is arriving at the Inverters in, then see Inverter Section for further testing.

Note: Either Inverter can run separately.

REMOVE AC POWER:

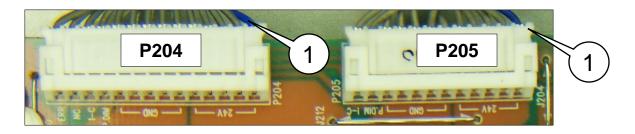


Power Supply Connector P201 Voltage and Diode Check

Pin	Label	STBY	Run	Diode Check
1	PWR-ON	0V	3.1V	1.68V
2-4	24V	0V	24.7V	0.424V
5-8	GND	GND	GND	GND
9-12	3.5V	3.45V	3.41V	Open
13-15	Gnd	Gnd	Gnd	Gnd
16	n/c	n/c	n/c	Open
17	12V	0V	11.88V	1.39V
18	INV-ON	0V	2.92V	Open
19	12V	0.42V	11.88V	1.39V
20	⁽¹⁾ P-DIM	0V	0.37V~3.3V	Open
21	12V	0V	11.88V	1.39V
22	n/c	n/c	0V	Open
23	n/c	n/c	0V	Open
24	ERROR	0V	0V	Open

P201 Connector "SMPS" to "Main" P8000

P201 Connector


Odd pins are on front row

(1) P-DIM Pin 20 can vary according to incoming video IRE level, OSD Backlight setting and then Intelligent Sensor (room light condition) Output from the Video Processor IC900. Range 0.37V to 3.3V.

Diode Mode values taken with all Connectors Removed

Power Supply Connector P204 / P205 Voltage and Diode Check

P204 "SMPS" to CN14 "Inverter Main"

Pin	Label	STBY	Run	Diode Check
1-5	24V	0V	24.65V	0.424V
6-10	GND	GND	GND	GND
11	⁽¹⁾ P-DIM	0V	0.37V~3.3V	Open
12	⁽²⁾ I-C	0V	2.92V	Open
13	n/c	n/c	n/c	Open
14	ERROR	0V	0V	Open

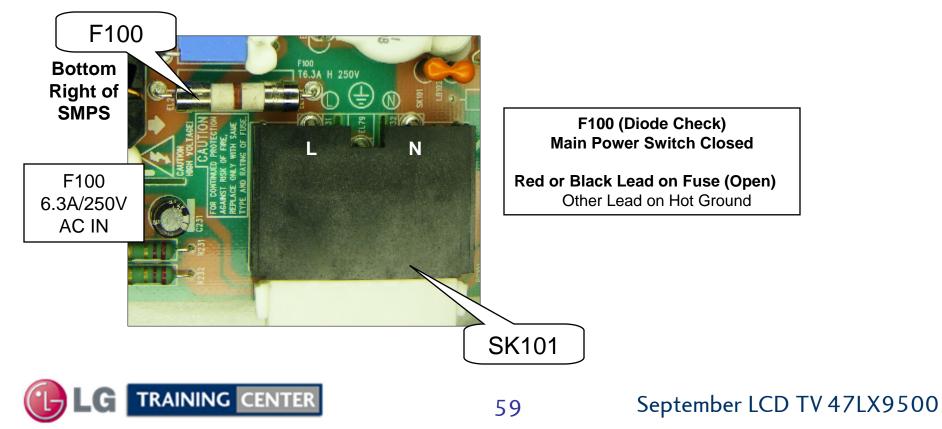
P205 "SMPS" to CN201 "Inverter Secondary"

Pin	Label	STBY	Run	Diode Check
1-5	24V	0V	24.65V	0.424V
6-10	GND	GND	GND	GND
11	⁽¹⁾ P-DIM	0V	0.37V~3.3V	Open
12	⁽²⁾ I-C	0V	2.92V	Open

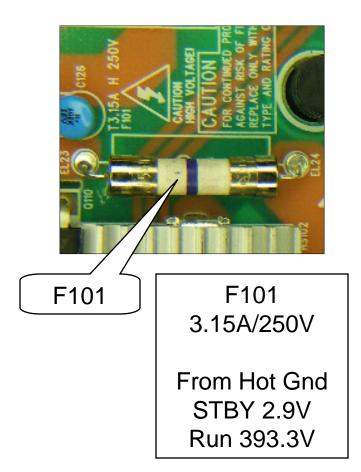
(1) PDIM Pin 20 can vary according to incoming video IRE level, OSD Backlight setting and then Intelligent Sensor (room light condition) Output from the Video Processor IC900. Range 0.37V to 3.3V.

⁽²⁾ I-C is the Inverter On Control Signal

Diode Mode values taken with all Connectors Removed

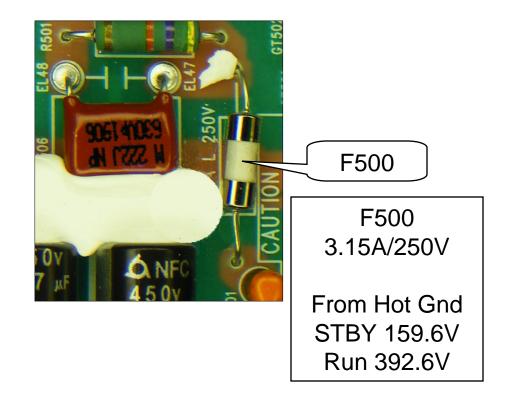

Power Supply Connector SK101 Voltage and Diode Check

Diode Mode values taken with all Connectors Removed


SK101 "SMPS" to AC IN

Pin	Label	STBY	Run	Diode Check
EL131	L	120Vac		OL
EL132	N			OL

AC Voltage Readings (From Hot Ground) Pins 1 and 2 for STBY and RUN.



Power Supply F101 and F501 Voltage Checks

If reading the voltage on F101 right after power off, it takes a very long time to bleed down to the reading given here.

INVERTER (LED BACKLIGHTS) SECTION

The Inverter (Main) receives 24V from the SMPS on CN1 pins 1~5 and Inverter (Secondary) receives 24V on CN101 pins 1~5. The Inverter On (INV ON) command arriving on CN1 or CN101 pin 12 starts the Inverter drive signals, (240Hz).

P-DIM is delivered from the Main board through the SMPS to the Inverter on CN1 or CN101 pin 11. The Inverters are responsible for delivering B+ approx. 13V to each of the 216 LED Blocks. This is accomplished by 3 DC to DC Converters, 2 on Inverter (Main) and 1 on Inverter (Secondary)

Inverter (Main) 13V

- U101, Q4, Q5, L101 and C75, out CN2 and CN3.
- U102, Q7, Q8, L102 and C89, out CN4 and CN5.

Inverter (Secondary) 13V

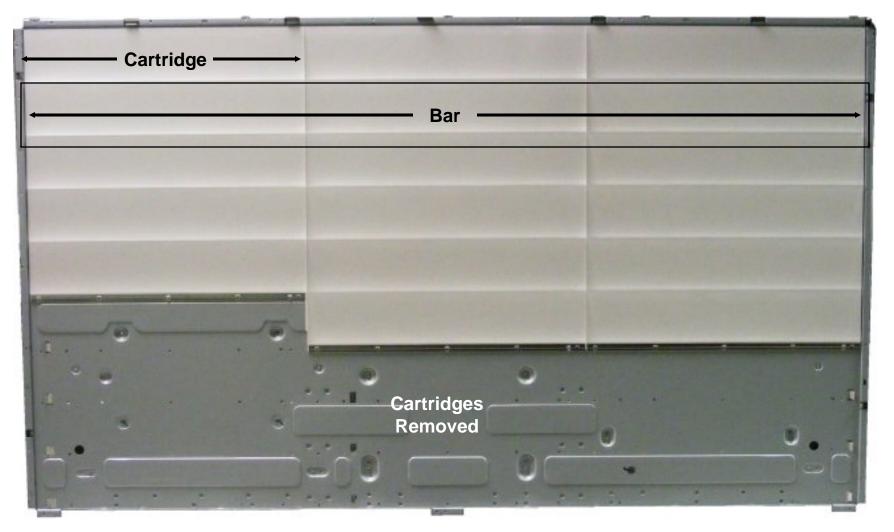
• U101, Q105, Q106, L206 and C151, out CN104 and CN105.

The Inverters must also deliver grounding pulses (Drive Signals) to each of the 216 LED Blocks. This is accomplished by the 14 switching components, 10 on Inverter (Main) U9~U11 and U13 and 5 on Inverter (Secondary) U2~U5 and U13.

Inverter (Main) has 4 Connectors CN2~CN5 that connect to Extensions boards. The Left hand Extension board (as viewed from the rear) connects to CN2 and CN3 and the Center Extension board connects to CN4 and CN5.

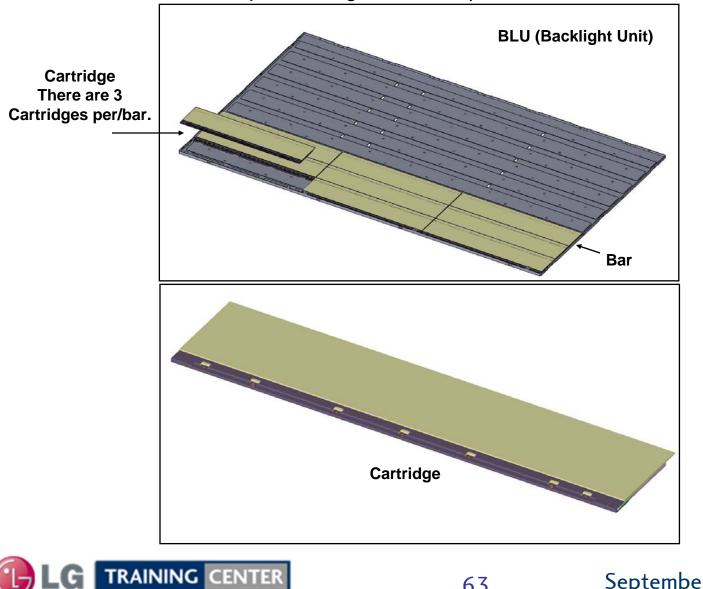
Inverter (Secondary) has 2 Connectors CN104~CN105 that connect to the right hand Extension board (as viewed from the rear) which connects to CN23 and CN24.

Each Extension board has 9 connections to the Backlight LEDs.

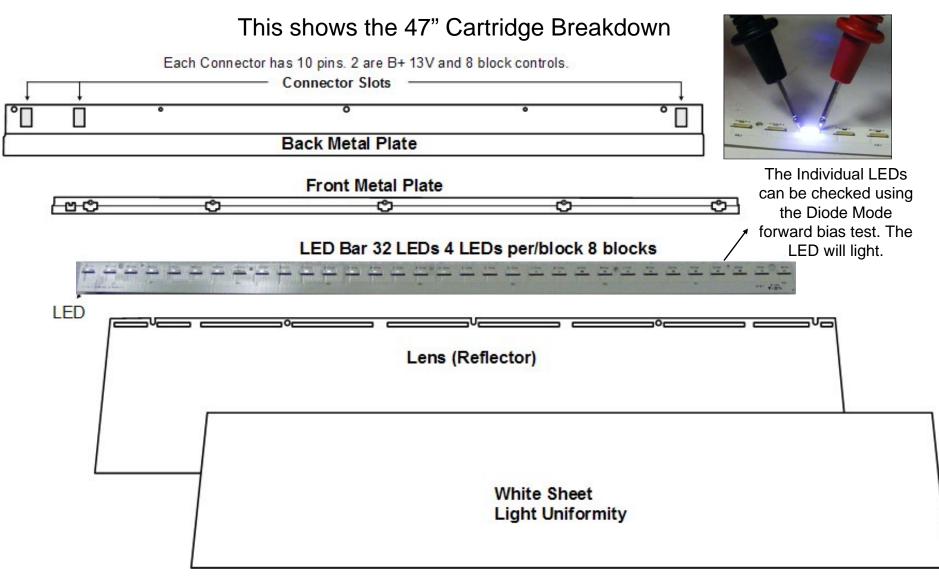

There are 4 LEDs per/block, 216 Blocks, 8 Blocks per/cartridge, 3 Cartridges per/bar, 9 bars (rows), 32 LEDs per/cartridge, 96 LEDs per/bar. With a total of 864 LEDs.

IOP Structure

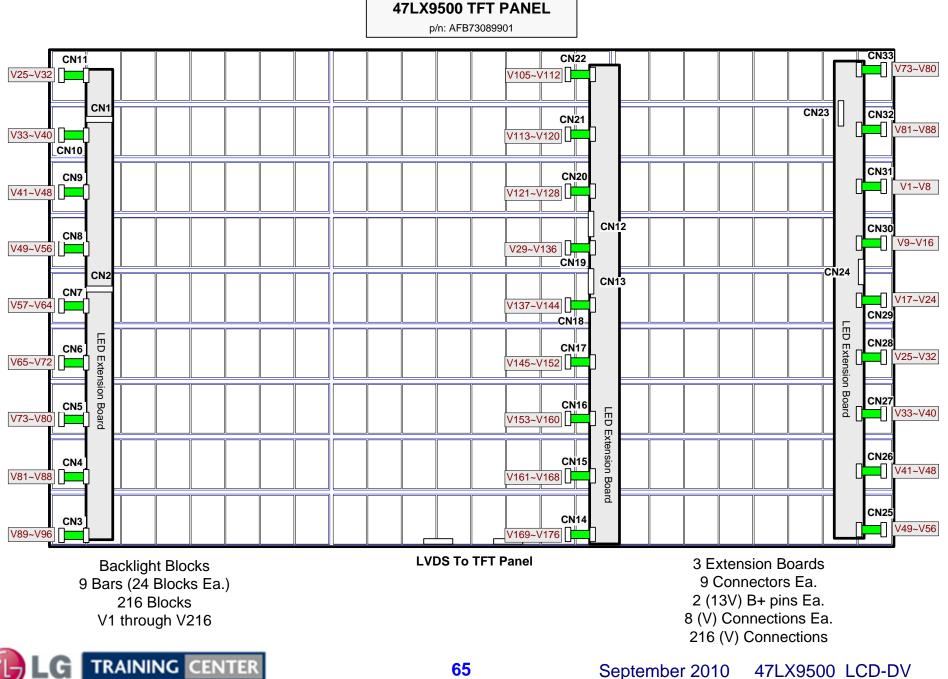
Integrated Optic Plate


The Image below shows the actual Backlight Bars used in the 47LX9500. The Cartridges are assembled from the bottom to the top, like shingles on a roof.

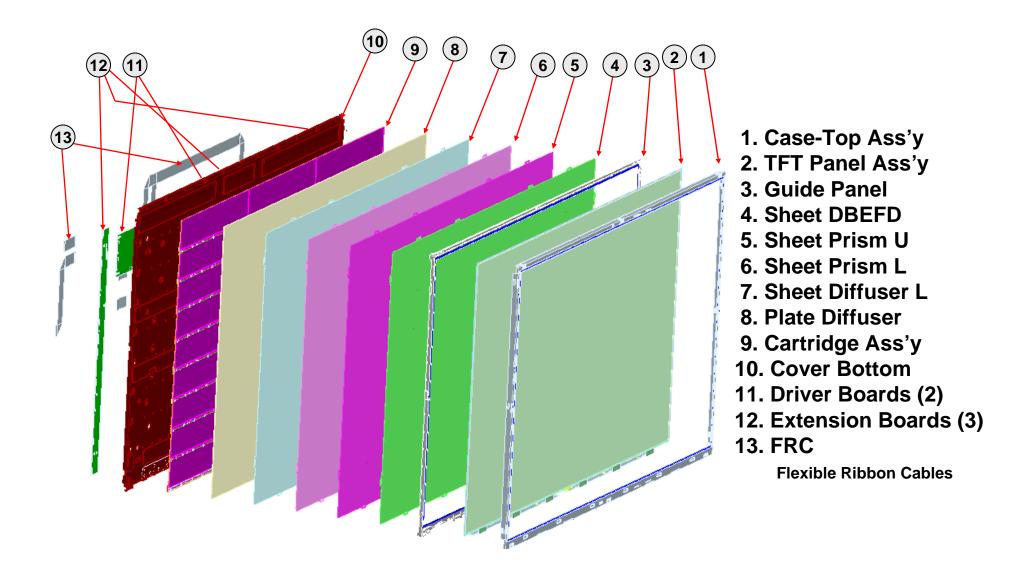
IOP Structure Information


4 LEDs per/block (216 Blocks) 8 Blocks per/cartridge, 9 bars with 3 cartridges per/bar, 32 LEDs per/cartridge, 96 LEDs per/bar. 864 LEDs total.

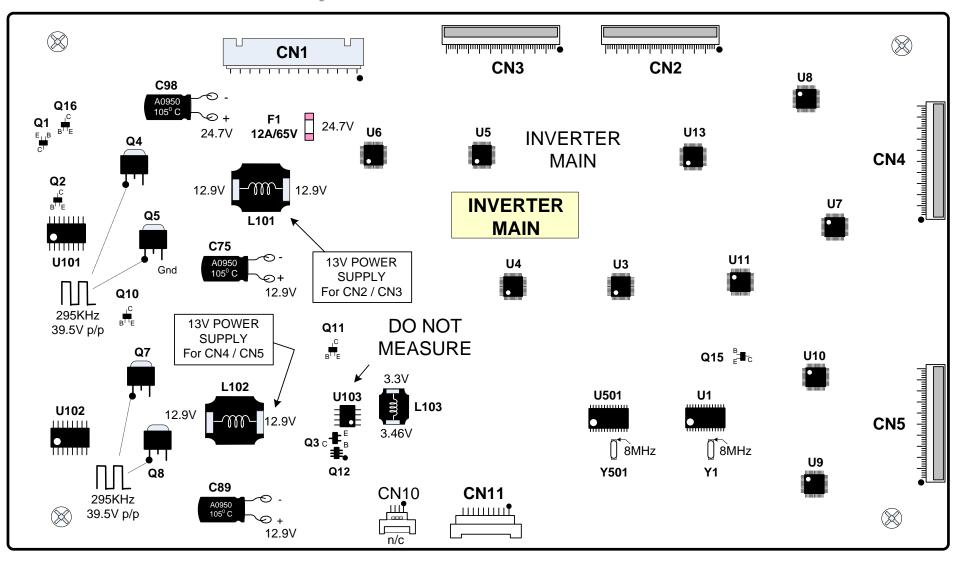
September LCD TV 47LX9500


63

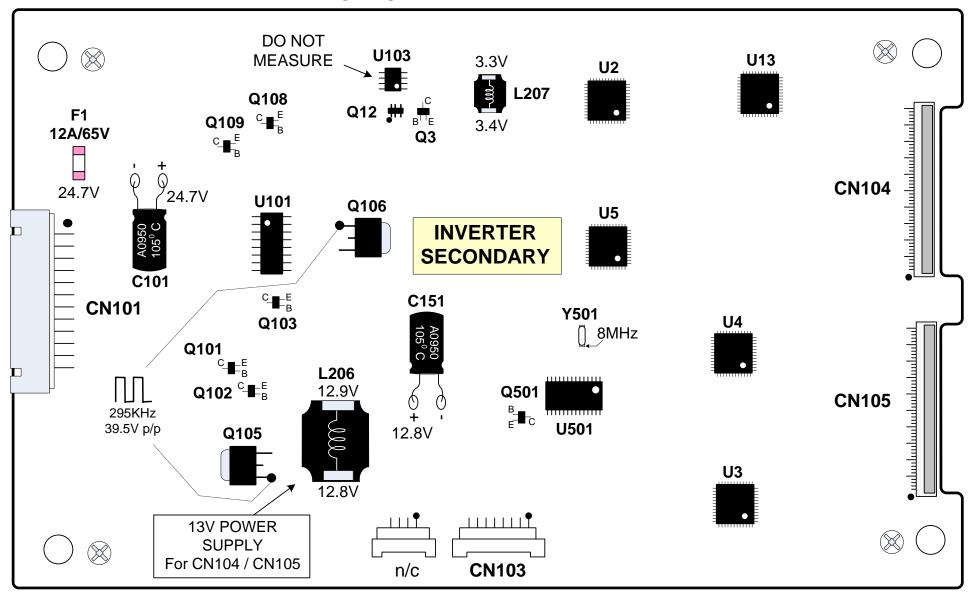
IOP Cartridge Breakdown



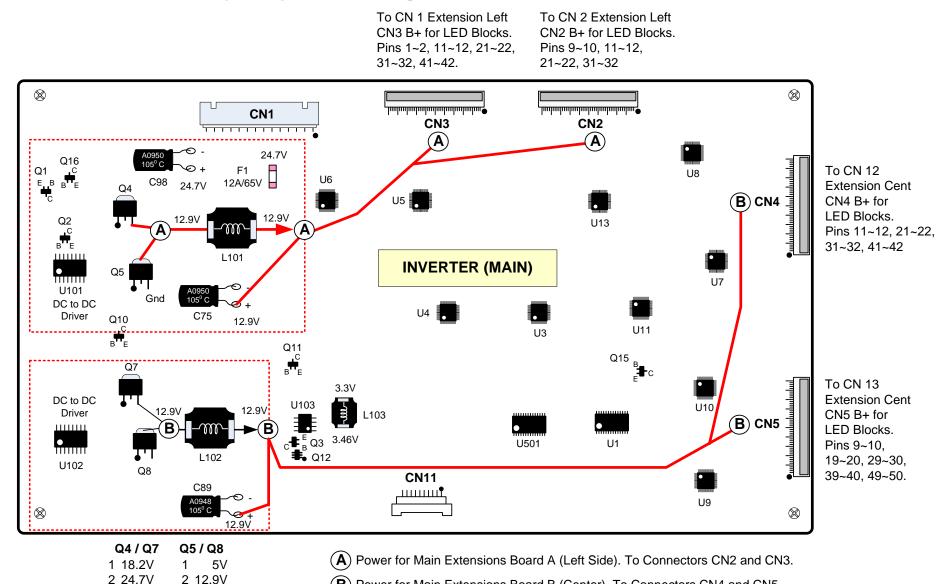
47LX9500 IOP Block Structure Information



47" Explode View of the IOP Panel

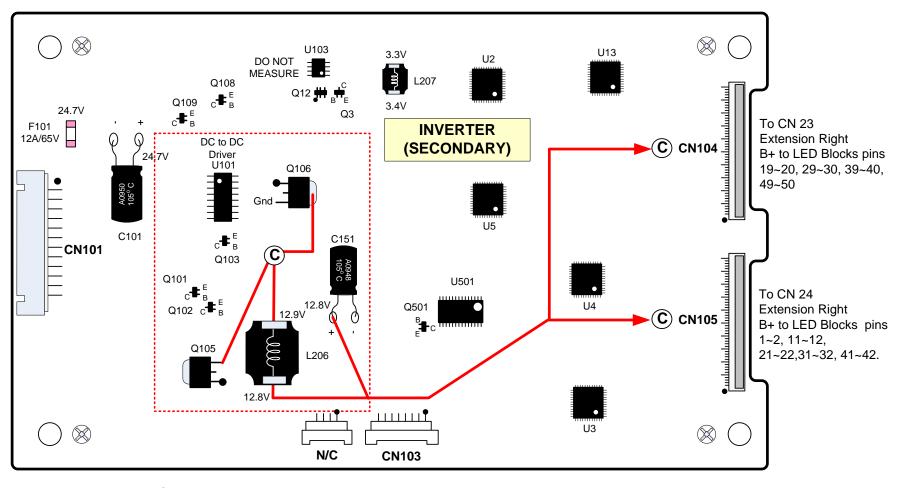


47LX9500 Inverter Main Layout



47LX9500 Inverter Secondary Layout

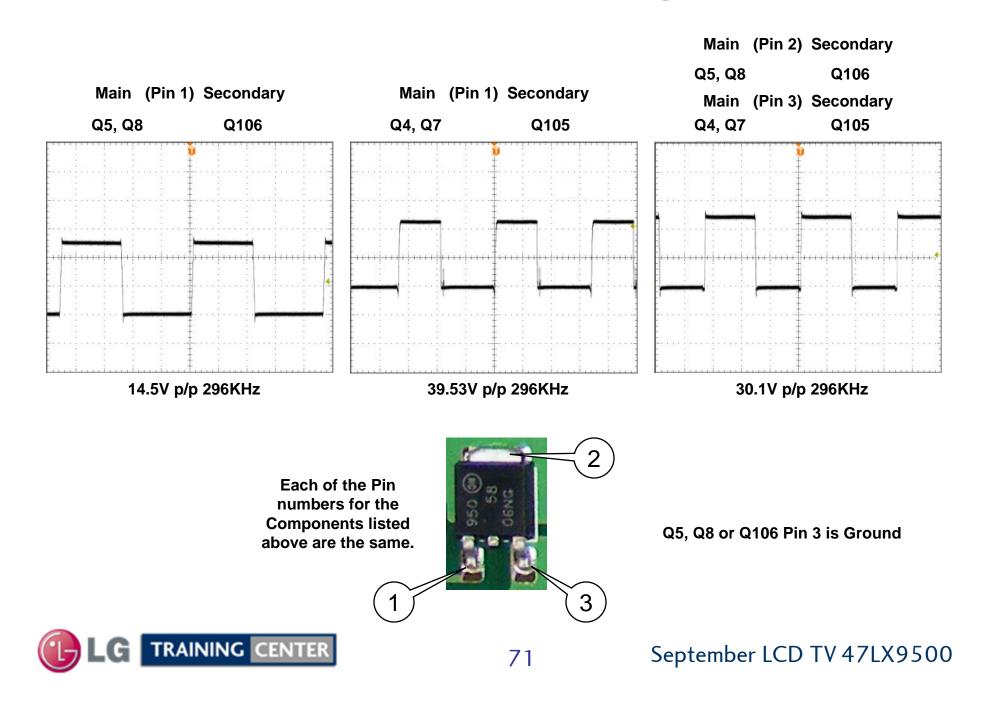
47LX9500 Inverter (Main) B+ Routing


(B) Power for Main Extensions Board B (Center). To Connectors CN4 and CN5.

3 Gnd

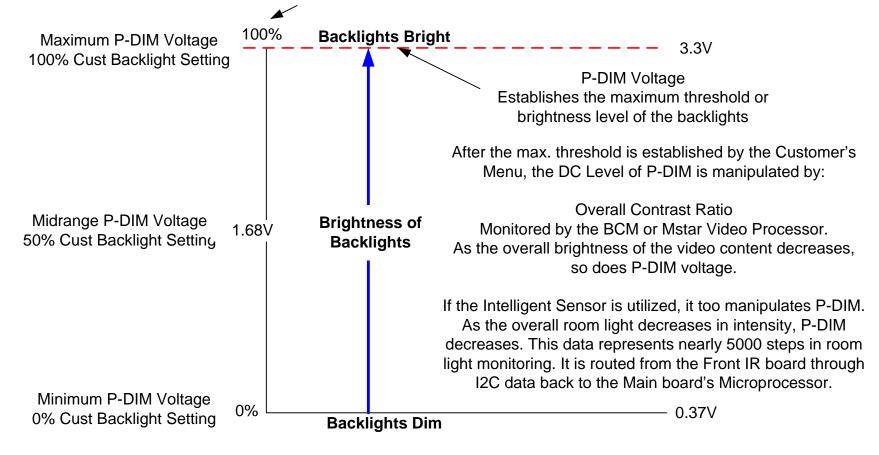
3 12.9V

47LE8500 Inverter (Secondary) B+ Routing



105	Q106		
18.2V	1	5V	
24.7V	2	12.9V	
12.9V	3	Gnd	
	18.2V 24.7V	18.2V 1 24.7V 2	

(C) Power for Secondary Extensions Board (Right Side) Connectors. To Connectors CN23 and CN24.



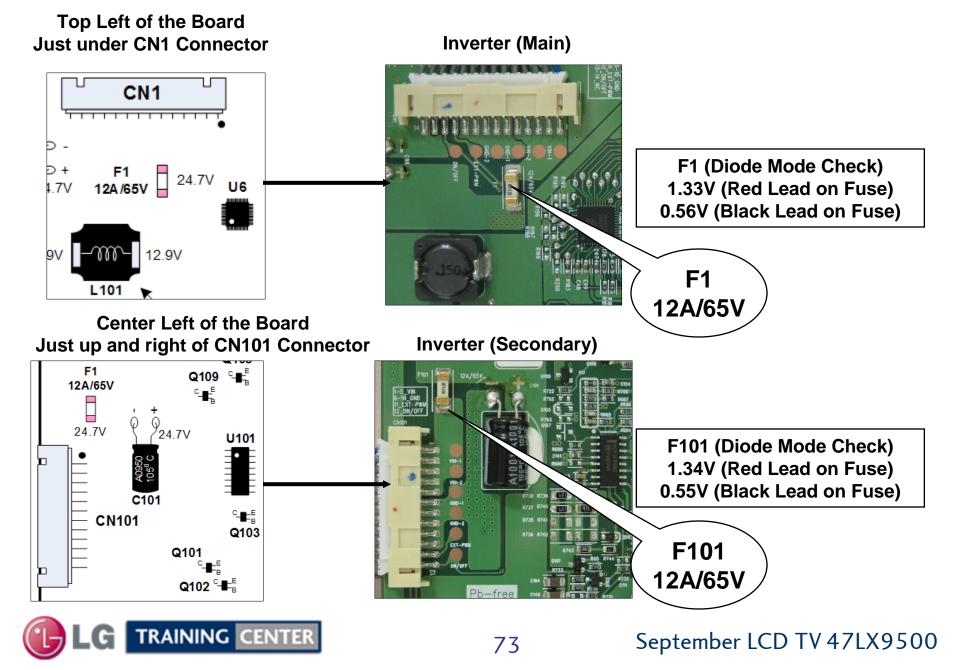
Inverter 13V LED B+ DC to DC Converter Troubleshooting

P-DIM (Global Dimming) Explained: P-DIM (May also be called PWM-DIM, VBR-B, PDS, BCM-VBR-B)

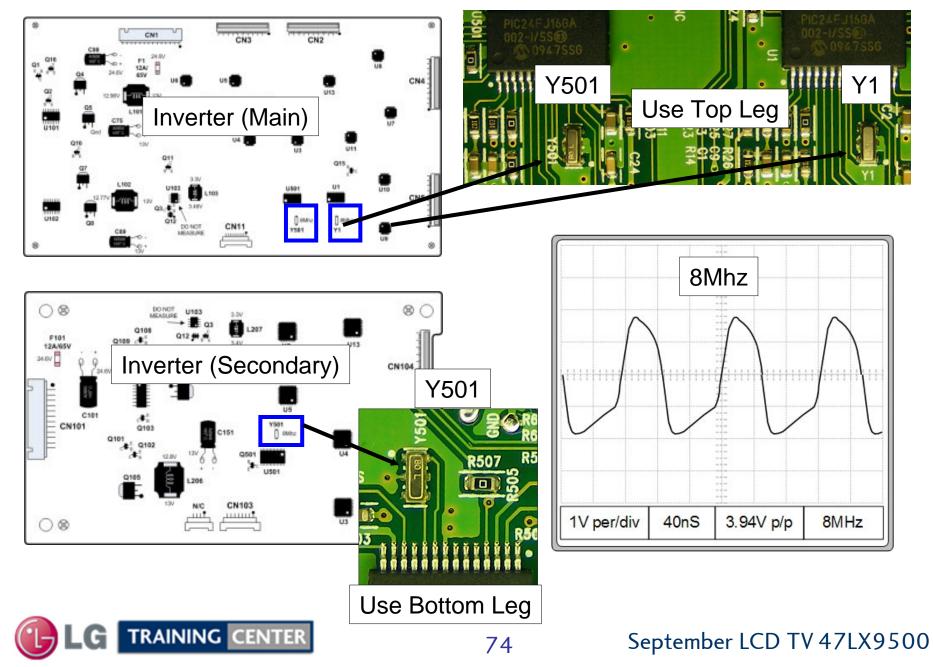
The Video Processor has the output that controls P-DIM. If the Microprocessor is separate from the video processor, then the customer's menu Backlights setting is communicated to the video processor via I2C.

Brightness and Contrast adjustments do not affect P-DIM

September 2010


47LX9500

LCD-DV


Analog Dimming is not used. It is a fixed voltage. Also called BR1, VBR-A, BCM-VBR-A, ADM

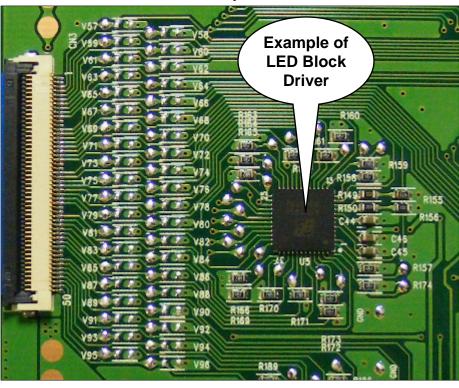
Inverter (Main) Fuse F1 and Inverter (Secondary) Fuse F101 Check

Inverter Crystals Y1, Y501 (Main) and Y501 on (Secondary) Information

Inverter LED Driver Information

The Inverters deliver grounding pulses (Drive Signals) to each of the 216 LED Blocks. This accomplishes Global Dimming and Local Dimming. Each output is labeled Vxx. Grounding each block is accomplished by the 14 switching components, 10 on Inverter (Main) U9~U11 and U13 and 5 on Inverter (Secondary) U2~U5 and U13.

Inverter (Main) has 4 Connectors CN2~CN5 that connect to Extensions boards. The Left hand Extension board (rear view) connects to CN2 and CN3 and the Center Extension board connects to CN4 and CN5.


CN2 13V Line Pins

9~10, 11~12,

21~22, 31~32

Note: Some of the Vxx numbers are repeated on the Silk Screen between Inverter (Main) and Inverter (Secondary). But there are a total of 216 (V1 through V216).

Example: U5

Voltage Supplies from Inverter (Main) To Extension Boards Left and Center

41~42

CN4 13V Line Pins CN5 11~12, 21~22, 31~32, 9~10

CN5 13V Line Pins 9~10, 19~20, 29~30, 39~40, 49~50 Inverter (Secondary) has 2 Connectors CN104~CN105 that connect to the right hand Extension board (rear view).

Each Extension board has 9 connections to the Backlight LEDs.

Voltage Supplies from Inverter (Secondary) To Extension Board Right

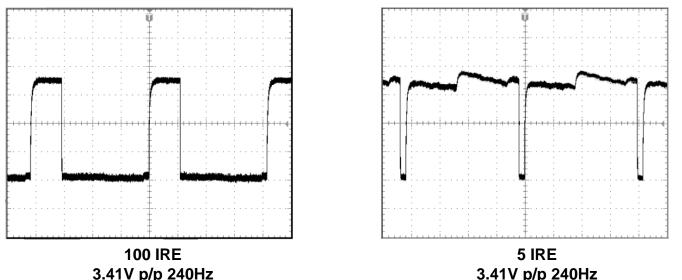
CN104 13V Line Pins 19~20, 29~30, 39~40, 49~50

CN105 13V Line Pins

1~2, 11~12, 21~22,31~32, 41~42

CN3 13V Line Pins

1~2, 11~12, 21~22,


31~32, 41~42

75

LED Drive Signal and Troubleshooting Information

Global Dimming (which affects every LED block at the same time) is accomplished by the P-DIM signal arriving on pin 11 of CN11 (Inv Main) and CN101 (Inv Secondary). As P-DIM voltage goes up, all drive signals will remain low longer. As P-DIM voltage goes down, all drive signals will remain high longer. P-DIM has a range of 0.37V to 3.3V.

Local Dimming (which affects individual LED blocks) is also accomplished by these drive signals which are manipulated by the Control Signals entering on CN11 Inv (Main) and CN103 Inv (Secondary).

Drive Signals being delivered to the LED Blocks V1 ~ V216

Note: If a particular block is exhibiting a dimmer level than the other or the overall brightness seems dim, be sure to first check the customer's Menu setting for Backlights. Raise the percentage and see if the overall brightness returns to normal. If not,

 1^{st} Check the P-DIM level, it should rise with the percentage shown on screen. 0% = 0.37V to 100% = 3.3V. Follow the P-DIM signal all the way to each Inverter.

2ND Turn off the set and unplug the connector to the Inverters coming from the Main board. If the brightness returns to normal, the Main board is defective. If not, investigate all inverter voltages, if OK, use the grounding of each V block procedure to test the panel's backlight LEDs.

Inverter Board Connector CN3 to Extension (Left) (Voltages)

This gives an example of how the output from an Inverter gets to the individual LED block, but there are 216 blocks (pins) spread out over 6 (50 pin) connectors, please use the Interconnect Diagram for details on all pins.

Inverter Run voltages taken with built in test pattern full white and black screens

CN3	to CN2		Extens	ion Board	on Board Left		
Inver	ter Main	In	Out to	BLOCK	Bright to Dark		
CN3	BLOCK	CN2	Panel	BLUCK	Voltage		
50	V96	1	CN3 pin 10	V96	0.7V~3.9V		
49	V95	2	CN3 pin 09	V95	0.7V~3.9V		
48	V94	3	CN3 pin 08	V94	0.7V~3.9V		
47	V93	4	CN3 pin 07	V93	0.7V~3.9V		
46	V92	5	CN3 pin 06	V92	0.7V~3.9V		
45	V91	6	CN3 pin 05	V91	0.7V~3.9V		
44	V90	7	CN3 pin 04	V90	0.7V~3.9V		
43	V89	8	CN3 pin 03	V89	0.7V~3.9V		
42	B+	9	CN3 pin 02	B+	12.55V		
41	B+	10	CN3 pin 01	B+	12.55V		
40	V88	11	CN4 pin 10	V88	0.7V~3.9V		
39	V87	12	CN4 pin 09	V87	0.7V~3.9V		
38	V86	13	CN4 pin 08	V86	0.7V~3.9V		
37	V85	14	CN4 pin 07	V85	0.7V~3.9V		
36	V84	15	CN4 pin 06	V84	0.7V~3.9V		
35	V83	16	CN4 pin 05	V83	0.7V~3.9V		
34	V82	17	CN4 pin 04	V82	0.7V~3.9V		
33	V81	18	CN4 pin 03	V81	0.7V~3.9V		
32	B+	19	CN4 pin 02	B+	12.55V		
31	B+	20	CN4 pin 01	B+	12.55V		

This chart does not show all 50 pins. For all connectors from the Inverters to the Panel, please use the Interconnect Diagram for details on all pins.

Inverter (Main) CN1 and CN11 Voltage and Diode Check

Pin	Label	STBY	Run	Diode Check
1	L_VS	0V	0.059V	Open
2	M0_MOSI	0V	*0.04V~3.2V	Open
3	M0_SCLK	0V	0.42V	Open
4	Gnd	Gnd	Gnd	Gnd
5	M1_MOSI	0V	*0.04V~3.26V	Open
6	M1_SCLK	0V	0.42V	Open
7	Gnd	Gnd	Gnd	Gnd
8	S_CS_N	0V	1.96V	1.9V
9	S_MOSI	0V	*0.18V~0.28V	1.87V
10	S_SCLK	0V	2.72V	1.87V

CN11 "Inverter Main" to "Main" P7900

CN1 "Inverter Main" Connector To P204 "SMPS"

Pin	Label	STBY	Run	Diode Check
1~5	24V	0V	24.7V	1.33V
6~10	Gnd	Gnd	Gnd	GND
11	⁽¹⁾ P-DIM	0V	0.37V~3.3V	Open
12	⁽²⁾ I-C	0V	2.92V	Open
13	N/C	N/C	N/C	Open
14	ERROR	0V	0V	Gnd

⁽¹⁾ PDIM Pin 11 can vary according to incoming video IRE level, OSD Backlight setting and then Intelligent Sensor (room light condition) Output from the Video Processor IC900. Range 0.37V to 3.3V.

*Black to White

(2) Inverter On/Off Control

Diode Mode values taken with all Connectors Removed

Inverter (Secondary) CN101 and CN103 Voltage and Diode Check

Inverter Run voltages taken with built in test pattern

Pin	Label	STBY	Run	Diode Check
1~5	24V	0V	24.7V	1.34V
6~10	Gnd	Gnd	Gnd	Gnd
11	⁽¹⁾ P-DIM	0V	0.37V~3.3V	Open
12	I-C	0V	2.92V	Open
Ν				

CN101 "Inverter Secondary" to P205 "SMPS"

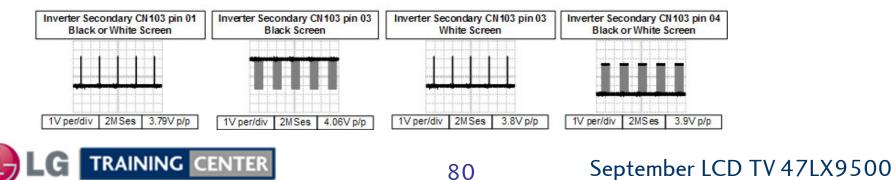
Pin	Label	STBY	Run	Diode Check
1	R_VS	0V	0.046V	1.08V
2	Gnd	Gnd	Gnd	GND
3	M2_MOSI	0V	*0.04V~3.2V	1.08V
4	M2_SCLK	0V	0.43V	1.08V
5	Gnd	Gnd	Gnd	Gnd
6	n/c	0V	0V	1.07V
7	n/c	0V	1.07VZ	1.07V
8	Gnd	Gnd	Gnd	Gnd

CN103 "Inverter Secondary" to "Main" P7901

⁽¹⁾ PDIM Pin 11 can vary according to incoming video IRE level, OSD Backlight setting and then Intelligent Sensor (room light condition) Output from the Video Processor IC900. Range 0.37V to 3.3V.

*Black to White

Diode Mode values taken with all Connectors Removed


Inverter On Control

Inverter Main and Secondary Local Dimming Control Signals Waveforms

CN103 INVERTER (SECONDARY) FROM P7901 MAIN BOARD

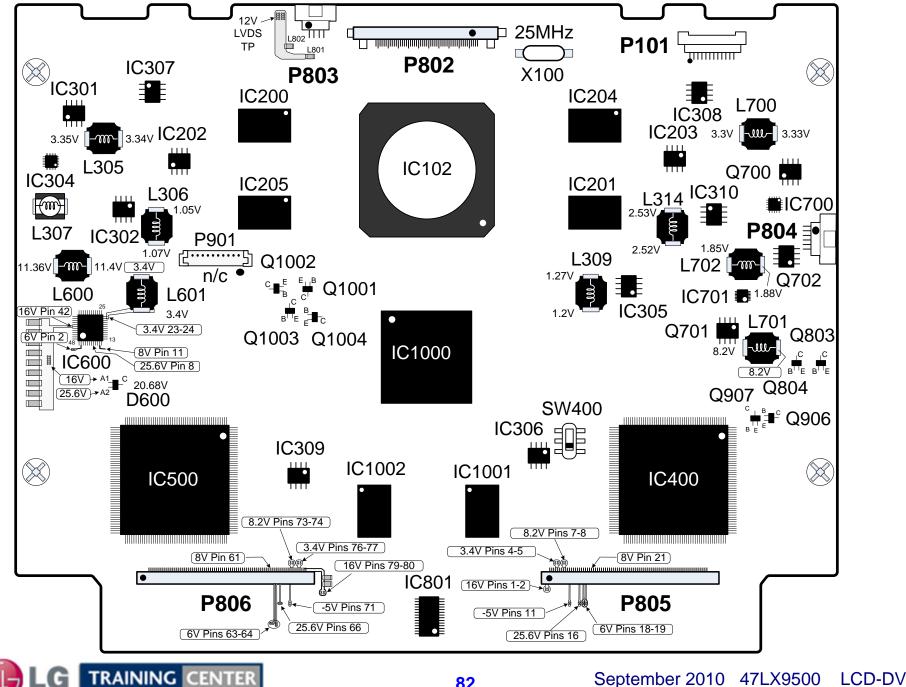
T-CON/3D (TFT DRIVE) with 3D FRAME CONVERTER SECTION

LCD Panel Controller Board

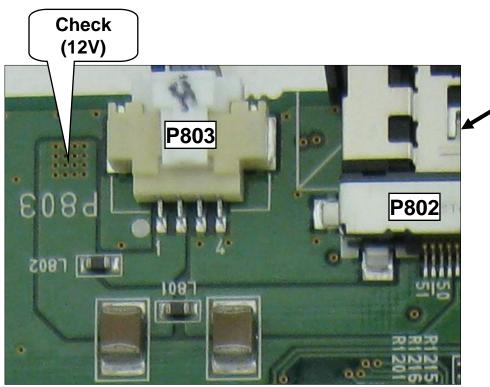
The Frame Rate Converter IC **IC102** receives from the Main Boards LVDS Video Signals at **P802**, which is a 51 pin cable. The Video Signal is a 20 Bit (24 pin including clock and data lines) LVDS (Low Voltage Differential Signal) which it processes into TFT Drive Signals. These signals are from IC400 and IC500 to connectors **P805** and **P806** and then to the LCD TFT Panel.

T-CON/3D B+: 12V is supplied to the T-Con Board from the Main Board **P7802** and **P7802**. Delivered by two connectors **P802** and **P803** easily measured at the Test Point just to the left of these connectors, (L801 and L802).

There is a primary DC to DC converter (**IC600**) that creates several voltages; (8V Measured at pin 11), (25.63V Measured at pin 8), (6V Measured at pin 2), (16V Measured at pin 42), (3.3V Measured at pin 23-24 or L601), (-5V Created by D601 on the back side of the board). Another voltage is generated for the panel (8.17V measured at L701).

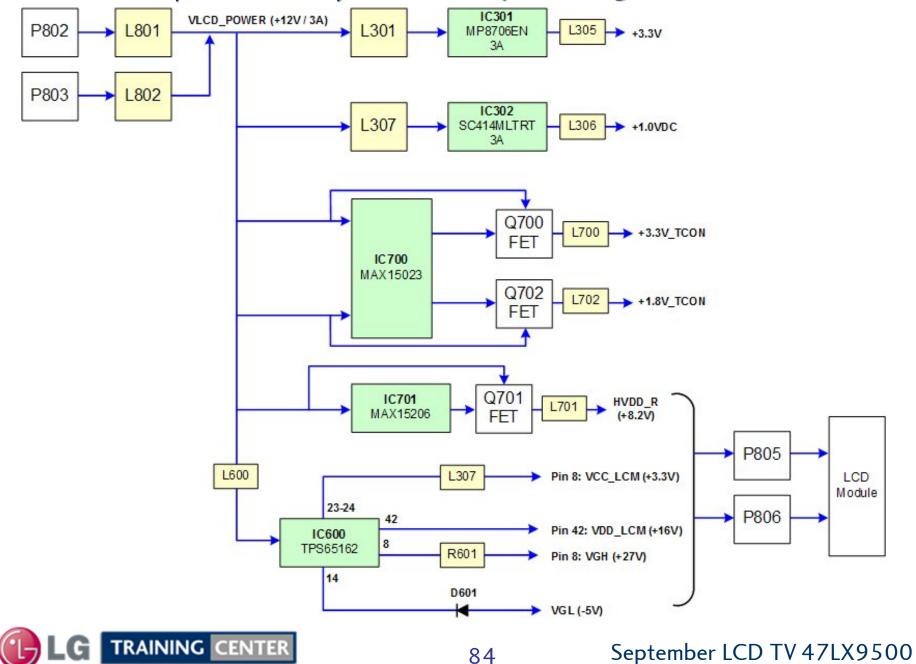

These Voltages can also be measured at the ribbon connectors delivering signals to the TFT panel using TPs. **P805:** "16V" pins 1-2, "3.34V" pins 4-5, "8.17V" pins 7-8, "-4.9V" pin 11, "25.63V" pin 16, "6V" pins 18-19, "8V" pin 21, "15.75V" pins 23-24 and "3.33V" pin 45.

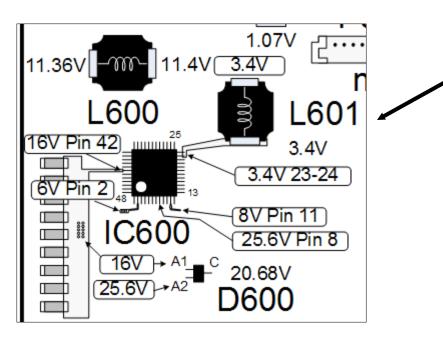
P806: 16V pins 79-80, 3.34V pins 76-77, 8.17V pins 73-74, -4.9V pin 71, 25.63V pin 66, 6V pins 63-64, "8V" pin 61, 15.75V pins 44 and "3.33V" pin 36.


Also, See the 11X17 Foldout (Interconnect Diagram) for more details.

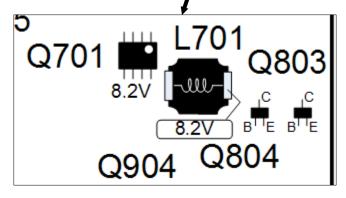
T-CON/3D Board Components Identified

T-CON/3D (TFT Drive) Board Checks

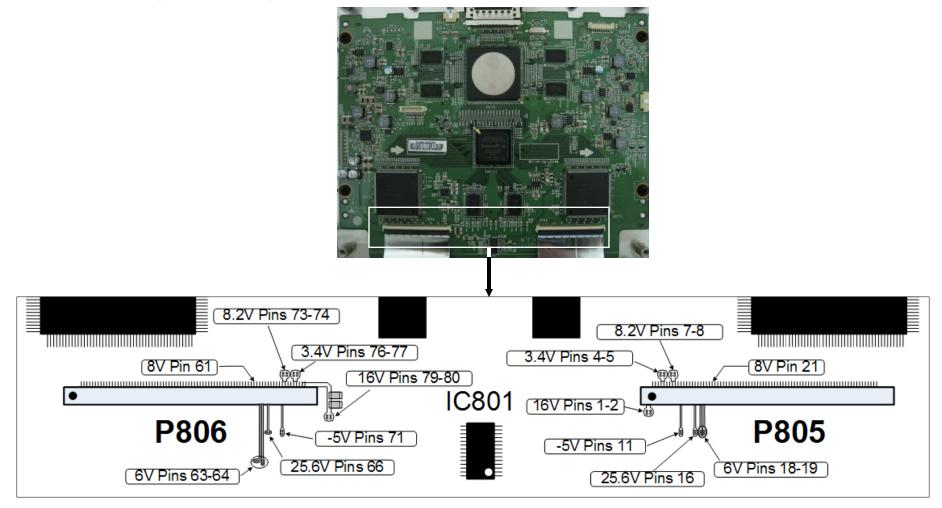

T-CON/3D Board (Locations)


Check for 12V Voltage supplied from P803 Pins 1-2 and/or P802 pins 49-51.

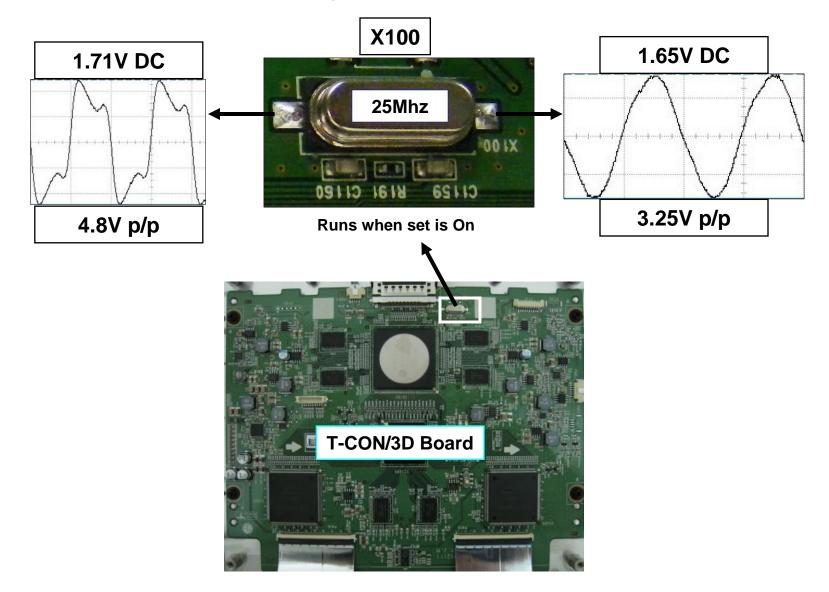
T-CON/3D 12V (VLCD_POWER) Power Development Diagram



T-CON/3D (TFT Drive) Panel Voltage Development Checks



The development for the voltages for P805 and P806 connectors to the panel are shown here. This is an excerpt from the Interconnect diagram. Panel voltages are outlined in the rounded cornered boxes.

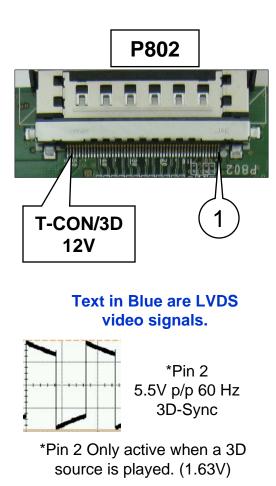

T-CON/3D (TFT Drive) Panel Voltage Checks

See the previous page for the development for the voltages for P806 and P805 connectors which are Panel voltages.

T-CON/3D Control Board X100 Crystal Checks

47LX9500 T-CON Component Voltages

HC202 +1.8V DDR Reg	1) Gnd 2) 3.2V 3) 0.09V 4) 0.09V 5) 1.8V 6) 3.34V 7) 1.18V 8) 0.89V	IC304 1) 0.7 2) 5.0 2) 5.0 3) Gn +2.5V 4) 0V VQ 5) 2.5 6) 5.0 7) 7.5 8) 11	0V 1V2 5V Reg 55V 36V	1) n/c 2) 2.5V 3) 2.51V 4) n/c 5) n/c 6) 1.81V 7) 0.81V 8) Gnd	IC600 1) 5.96V 2) 6.03V 3) 3.15V 4) 0.17V	DC-DC Conv 25) 11.38V 26) 11.38V 27) 11.07V 28) 0V	IC701 DC-DC Conv For HVDD	1) Gnd 2) 11.68V 3) 5.26V 4) 0.73V 5) 0.58V 6) 1.97V 7) 0.59V 8) 1.20V	BHE	 B) 2.52V E) 2.52V C) 2.27V B) 2.52V E) 2.52V C) 2.27V 	Q700 +3.3V TCON Reg	1) Gnd 2) 3.26V 3) 3.33V 4) 4.79V 5) 11.42V 6) 11.42V 7) 3.34V 8) 3.34V
IC203 +1.8V DDRS Reg	1) Gnd 2) 3.27V 3) 0.89V 4) 0.9V 5) 1.8V 6) 3.34V	9) 11 10) 1 11) 1 12) 2 13) G 14) G	1.36V 1.36V 55V 55V 50d 50D 500 500 500 500 500 500 500 500 500	2) 2.49V 3) 2.51V	5) 2.72V 6) 3.3V 7) 0V 8) 25.6V 9) 24.7V 10) 1.26V 11) Gnd	29) 4.24V 30) 1.9V 31) 0.59V 32) 3.3V 33) 3.13V 34) 0V 35) 0V		9) Gnd 10) 5.20V 11) 1.40V 12) 13.1V 13) 8.10V 14) 11.68V	Q906 ≝∎ ^c	B) 0.61V E) Gnd C) 0.03V	Q701 +8.2V HVDD	1) Gnd 2) 1.42V 3) 8.16V 4) 11.7V 5) 11.42V
IC301	6) 3.34V 7) 1.8V 8) 0.9V 1) 11.41V	15) 2 16) G 17) G 18) G 19) G	ind ind ind IC308 ind III	2) 2.47V	12) 5.54V 13) 0V 14) 0V 15) Gnd	36) 0V 37) 11.33V 38) 11.37V 39) n/c	IC801	1) 8.01V 2) 15.7V 3) 15.7V 4) 14.05V 5) 13.35V	Q907	B) 0.0V E) Gnd C) 1.9V	Reg Q702	6) 11.42V 7) 8.2V 8) 8.2V 1) Gnd
+3.3V Reg	2) 3.35V 3) 3.35V 4) 8.77V 5) 3.11V 6) 0.81V	20) 2 21) 2 22) n 23) 0 24) 2	.5V +1.8V /c DDRS V Reg	3) 2.49V 4) n/c 5) n/c 6) 1.8V 7) 0.8V	16) 0V 17) 1.26V 18) 4.24V 19) Gnd 20) Gnd	40) n/c 41) 1.27V 42) 16V 43) 5.96V 44) 5.96V	Buffer	() 10 07)/	Q1001	B) 0V E) Gnd C) 1.97V	+1.8V TCON Reg	2) 4.27V 3) 1.89V 4) 2.72V 5) 11.41V 6) 11.41V
IC302	7) 5.02V 8) Gnd 1) 0.8V	25) n 26) G 27) 1 28) 1	ind .13V IC309 0.99V IC	8) Gnd 1) Gnd 2) 3.26V 3) 0.89V	21) 1.27V 22) 11.45V 23) 3.4V 24) 3.4V	45) 5.96V 46) 5.96V 47) Gnd 48) 5.97V		11) 8.31V 12) 7.72V 13) 3.33V 14) 3.33V	Q1002 °∎₅ [≞]	B) 0.6V E) Gnd C) 0.02V	D600	7) 0V 8) 1.89V A1) 16V
+1.0V VDC Reg	2) Gnd 3) 3.33V 4) 4.26V 5) 3.3V 6) 1.08V	1V2 4) 4	ind Reg .32V .32V	4) 0.9V 5) 1.8V 6) 3.34V 7) 1.8V 8) 0.9V	DC-DC IC70 Conv ♥ 1) 0.59V 2) 3.3V 3) 3.3V	0 For +3.3V TCON 13) Gnd 14) 3.6V 15) 0.12V		15) 3.33V 16) Gnd 17) 0V 18) Gnd 19) 4.94V	BHE	B) 0.59V E) Gnd C) 0.02V		A2) 25.6V C) 20.68V
	7) 1.08V 8) 3.0V	7) 1	001/	1) 11.41V 2) 2.53V 3) 2.53V 4) 7.97V 5) 3.11V 6) 0.8V 7) 5.07V 8) Gnd	4) 0V 5) 4.26V 6) Gnd 7) 1.8V 8) 7V 9) 2.7V 10) 4.78V 11) 8.47V 12) 3.33V	16) 5.21V 17) 0.6V 18) 1.13V 19) 1.18V 20) Gnd 21) 11.4V 22) 0.56V 23) 0.81V 24) 0.9V		20) 3.75V 21) 2.67V 22) 16.02V 23) 0V 24) Gnd 25) 0.27V 26) 0.27V 27) 0.25V 28) 5.96V	Q1004 [₿] _ε ∎c	B) 0.02V E) Gnd C) 3.33V		



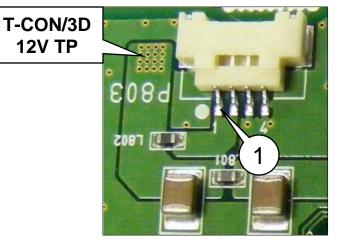
T-CON/3D Board LVDS P802 to Main Board P7800 Voltage and Diode Check

P802 LVDS Connector "T-CON/3D Board" to P7800 "Main"

Pin	Label	Run	Diode Check	
1	Gnd	Gnd	Gnd	
2	3D_Sync_Out	0.03V	2.34V	
3	*V_SYNC	3.33V	1V	
4	SDA3_3.3V	3.34V	1.73V	
5	SCL3_3.3V	3.34V	1.73V	
6	FRC_RESET	3.32V	Open	
7	n/c	n/c	n/c	
8	3DTV	0V	Open	
9	3D_DIM	0V	Open	
10	3D_DIM_2	0.05V	Open	
11	n/c	n/c	n/c	
12	RRXA0-	1.17V	1.67V	
13	RRXA0+	1.19V	1.67V	
14	RRXA1-	1.19V	1.67V	
15	RRXA1+	1.17V	1.67V	
16	RRXA2-	1.22V	1.67V	
17	RRXA2+	1.14V	1.67V	
18	Gnd	Gnd	Gnd	
19	RRXACK-	1.16V	1.67V	
20	RRXACK+	1.20V	1.67V	
21	Gnd	Gnd	Gnd	
22	RRXA3-	1.20V	1.67V	
23	RRXA3+	1.14V	1.67V	

Pin	Label	Run	Diode Check
24	RRXA4-	1.26V	1.67V
25	RRXA4+	1.08V	1.67V
26	Gnd	Gnd	Gnd
27	n/c	n/c	n/c
28	RRXB0-	1.19V	1.67V
29	RRXB0+	1.19V	1.67V
30	RRXB1-	1.19V	1.67V
31	RRXB1+	1.16V	1.67V
32	RRXB2-	1.2V	1.67V
33	RRXB2+	1.14V	1.67V
34	Gnd	Gnd	Gnd
35	RRXBCK-	1.16V	1.67V
36	RRXBCK+	1.2V	1.67V
37	Gnd	Gnd	Gnd
38	RRXB3-	1.22V	1.67V
39	RRXB3+	1.14V	1.67V
40	RRXB4-	1.26V	1.67V
41	RRXB4+	1.09V	1.67V
42-46	Gnd	Gnd	Gnd
47	n/c	n/c	n/c
48-51	PANEL_VCC	11.59V	Open

T-CON/3D B+

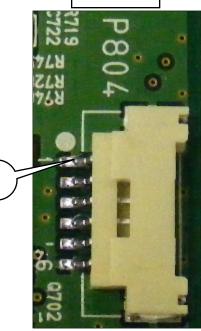

Diode Check taken with meter in Diode Mode with all Connectors Removed

T-CON/3D Board P803 and P804 to Main Board Voltage and Diode Check

Pin	LABEL	Run	Diode Check
1	PANEL_VCC	11.55V	Open
2	PANEL_VCC	11.55V	Open
3	Gnd	Gnd	Gnd
4	Gnd	Gnd	Gnd

P803 Connector "T-CON/3D Board" to P7802 "Main"

P804 Connector "T-CON/3D Board" to P7803 "Main"


Pin	LABEL	Run	Diode Check
1	Gnd	Gnd	Gnd
2	E_TCK	0V	Open
3	E_TDO	3.33V	Open
4	E_TMS	0.35V	Open
5	E_TDI	3.32V	Open
6	Gnd	Gnd	Gnd

Diode Check taken with meter in Diode Mode with all Connectors Removed

September LCD TV 47LX9500

P804

T-CON/3D Board P805 to the Panel Voltages

1	VDD (16V)	16V
2	VDD (16V)	16V
3	Gnd	Gnd
4	VCC (3.3V)	3.4V
5	VCC (3.3V)	3.4V
6	Gnd	Gnd
7	HVDD (8V)	8.2V
8	HVDD (8V)	8.2V
9	Gnd	Gnd
10	OPT_P	n/c
11	VGL (-5V)	(-5V)
12	Gnd	Gnd
13	GOE	0.83V
14	GSC	2.3V
15	Gnd	Gnd
16	VGH (26V)	25.6V
17	Gnd	Gnd
18	VCOMRFB	6V
19	VCOM ROUT	6V
20	Gnd	Gnd
21	Z_OUT	8V
22	Gnd	Gnd
23	V1	15.75V
24	V2	15.75V
25	V3	14V
26	V4	13.35V
27	V5	12.27V

		-
28	V6	11.08V
29	V7	10.28V
30	V9	8.31V
31	V10	7.71V
32	V12	3.37V
33	V13	4.94V
34	V14	3.75V
35	V15	2.68V
36	V16	1.97V
37	V17	0.27V
38	V18	0.26V
39	Gnd	Gnd
40	GSP	0V
41	POL	1.66V
42	Gnd	Gnd
43	SOE_R	0.25V
44	H_CONV	0.44V
45	OPT_N	3.33V
46	Gnd	Gnd
47	RLMVOP	0.15V
48	RLMVON	0.17V
49	RLMV1P	0.14V
50	RLMV1N	1.24V
51	RLMV2P	1.13V
52	RLMV2N	1.22V
53	Gnd	Gnd

54	RLMVCLKP	1.19V
55	RLMVCLKN	1.18V
56	Gnd	Gnd
57	RLMV4P	1.15V
58	RLMV4N	1.24V
59	RLMV5P	1.34V
60	RLMV5N	1.22V
61	RLMV6P	1.12V
62	RLMV6N	1.23V
63	Gnd	Gnd
64	RRMV0P	1.13V
65	RRMV0N	1.23V
66	RRMV1P	1.15V
67	RRMV1N	1.23V
68	RRMV2P	1.15V
69	RRMV2N	1.23V
70	Gnd	Gnd
71	RRMVCLKP	1.19V
72	RRMVCLKN	1.18V
73	Gnd	Gnd
74	RRMV4P	1.13V
75	RRMV4N	1.24V
76	RRMV5P	1.11V
77	RRMV5N	1.12V
78	RRMV6P	1.12V
79	RRMV6N	1.22V
80	Gnd	Gnd

T-CON/3D Board P806 to the Panel Voltages

1	Gnd	Gnd
2	LLMV0P	1.19V
3	LLMV0N	1.24V
4	LLMV1P	1.18V
5	LLMV1N	1.3V
6	LLMV2P	1.15V
7	LLMV2N	1.29V
8	Gnd	Gnd
9	LLMVCLKP	1.22V
10	LLMVCLKN	1.23V
11	Gnd	Gnd
12	LLMV4P	1.18V
13	LLMV4N	1.26V
14	LLMV5P	1.26V
15	LLMV5N	1.27V
16	LLMV6P	1.16V
17	LLMV6N	1.26V
18	Gnd	Gnd
19	LRMV0P	1.17V
20	LRMV0N	1.28V
21	LRMV1P	1.15V
22	LRMV1N	1.26V
23	LRMV2P	1.17V
24	LRMV2N	1.27V
25	Gnd	Gnd
26	LRMVCLKN	1.21V
27	LRMVCLKP	1.23V

28	Gnd	Gnd
29	LRMV4P	1.15V
30	LRMV4N	1.25V
31	LRMV5P	1.18V
32	LRMV5N	1.26V
33	LRMV6P	1.17V
34	LRMV6N	1.25V
35	Gnd	Gnd
36	OPT_N	3.33V
37	H_CONV	Gnd
38	GSP	0V
39	POL	1.66V
40	Gnd	Gnd
41	SOE_L	0.24V
42	Gnd	Gnd
43	V1	15.75V
44	V2	15.75V
45	V3	14V
46	V4	12.26V
47	V5	11.07V
48	V6	11.07V
49	V7	10.27V
50	V9	8.31V
51	V10	5.74V
52	V12	Gnd
53	V13	4.94V

54	V14	3.75V
55	V15	2.68V
56	V16	0.27V
57	V17	0.26V
58	V18	0.26V
59	Gnd	Gnd
60	Gnd	Gnd
61	Z_OUT	8V
62	Gnd	Gnd
63	VCOMLOUT	6V
64	VCOMLFB	6V
65	Gnd	Gnd
66	VGH (26V)	25.6V
67	Gnd	Gnd
68	GSC	2.3V
69	GOE	0.83V
70	Gnd	Gnd
71	VGL (-5V)	(-5V)
72	Gnd	Gnd
73	HVDD (8V)	8.2V
74	HVDD (8V)	8.2V
75	Gnd	Gnd
76	VCC (3.3V)	3.4V
77	VCC (3.3V)	3.4V
78	Gnd	Gnd
79	VDD (16V)	16V
80	VDD (16V)	16V

MAIN BOARD SECTION

The Main board receives its operational B+ from the Power Supply via P8000. There are a single LVDS cable that feeds the Video to the T-CON/3D (TFT Driver) board that drives the Panel. The LVDS cable carries the 20 bit LVDS Video and the TruMotion (Motion Estimated Motion Compensated) video. The Main board also includes the Tuner, Audio and Audio/Video inputs and selection circuits.

Input Voltages from SMPS.

STAND-BY

• STBY 3.5V (P8000 pins 9~12)

RUN

- 12V pins 13, 19 and 21.
- 24V pins 2-4.

The Main board also develops several B+ sources on the board.

STAND-BY VOLTAGES

• 3.3V_ST (Voltage direct from SMPS)

LVDS

• Panel_VCC (12V Not generated, but switched from the 12V arriving from the SMPS.

TUNER and VSB CIRCUIT (Made from the 12V)

- 5V_Normal which is used to make 5V TU
- 5V_TU
- 3.3V_TU
- 1.26V_TU

WIRELESS VOLTAGES

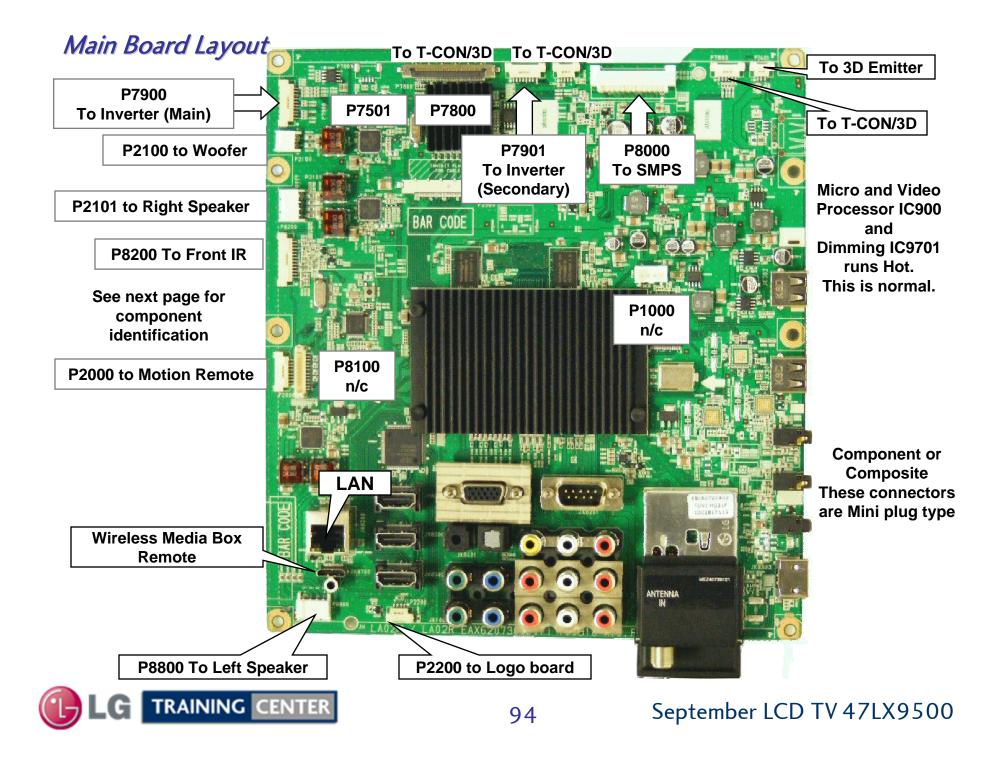
• 24V (Switched from 24V from SMPS)

GENERAL

- 5V_Normal
- 5V USB

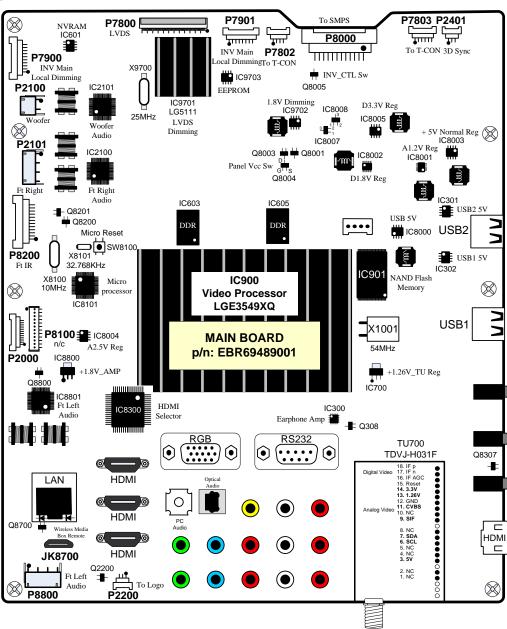
AUDIO (IC8801)

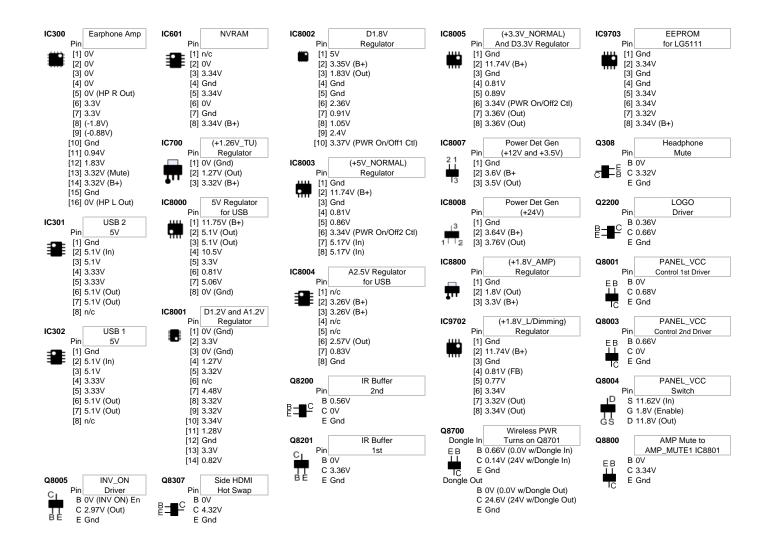
- 1.8V
- 3.3V

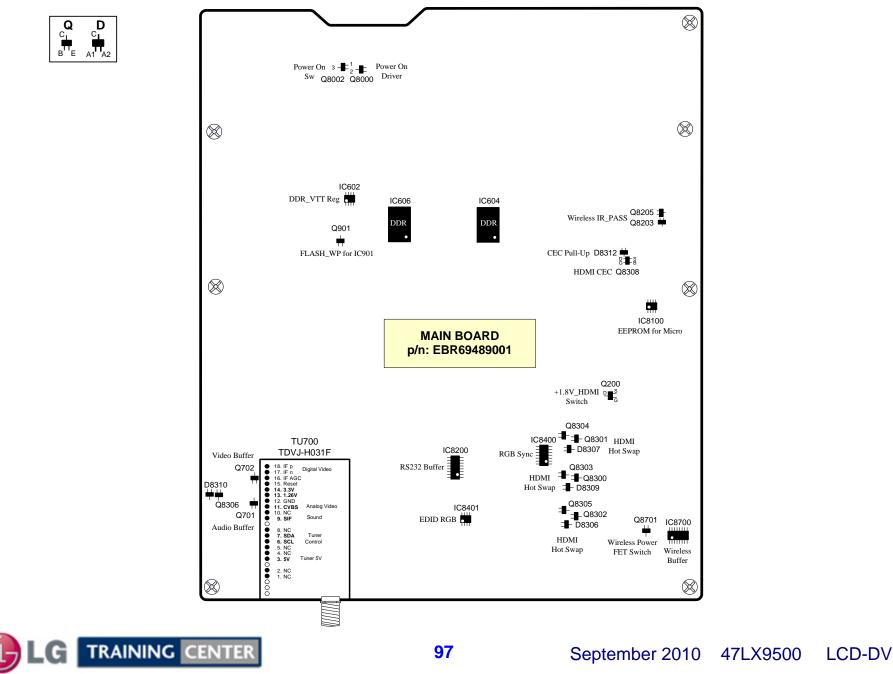

BCM IC900 Video Processors

• 1.2V

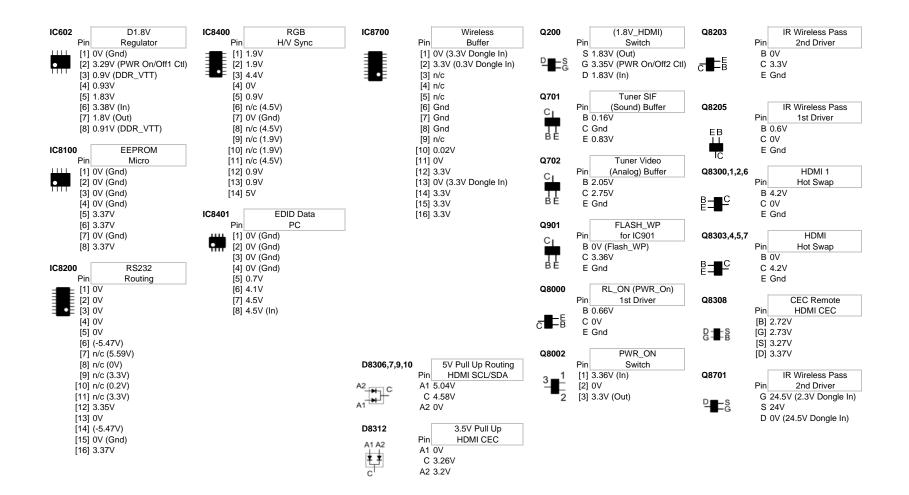
IC9701 Tru-Motion and Local Dimming IC.


• 1.26V_MEMC, 1.5V_MEMC, D1.5V, D1.8V, and 3.3V

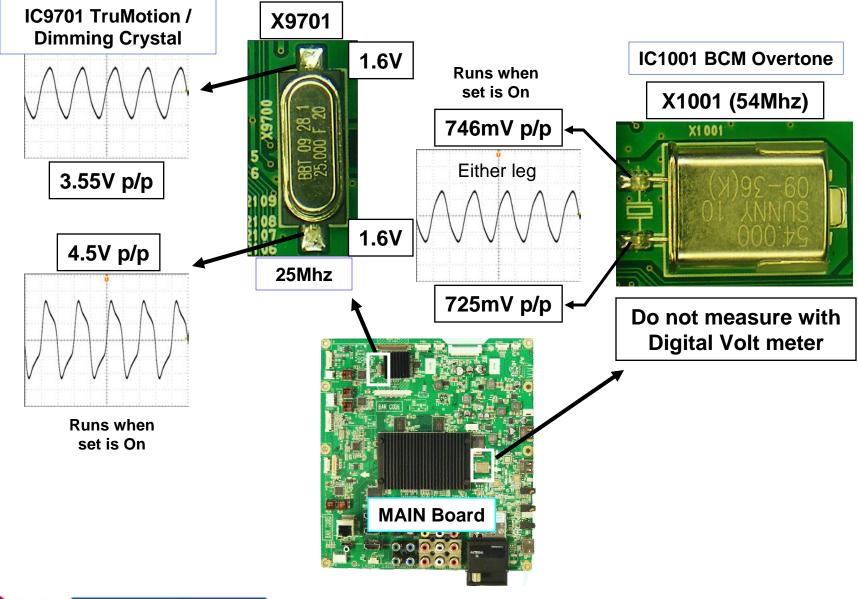

47LX9500 Main Layout



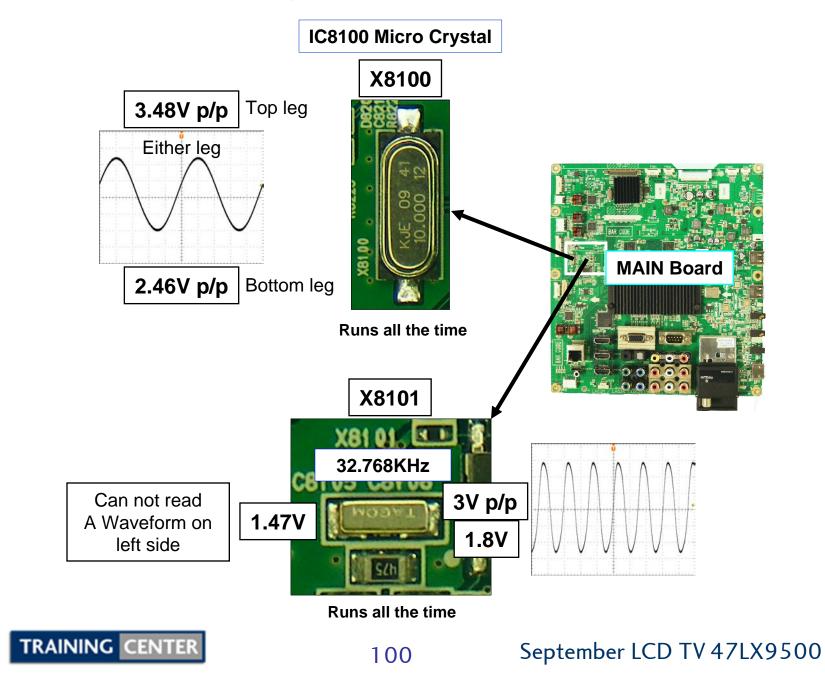
47LX9500 Main (Front Side) Component Voltages



47LX9500 Main (Back Side) Layout



47LX9500 Main (Back Side) Component Voltages



Main Board X9701 and X1001 Crystal Checks

Main Board X8100 and X8101 Crystal Checks

Main Board Connector P8000 to Power Supply Voltage and Diode Check

P8000

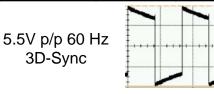
P8000 "Main Board" to P201 "SMPS"

	Pin	Label	STBY	Run	Diode Check
	1	PWR-ON	0V	3.31V	Open
	2-4	24V	0V	24.7V	Open
	5-8	Gnd	Gnd	Gnd	Gnd
Odd Pins Front Row	9-12	3.5V	3.45V	3.41V	1.18V
	13-15	Gnd	Gnd	Gnd	Gnd
	16	n/c	n/c	n/c	Open
	17	12V	0V	11.88V	Open
	18	INV-ON	0V	2.92V	1.61V
	19	12V	0V	11.881V	Open
⁽¹⁾ PDIM Pin 20 can vary according to incoming video IRE level, OSD Backlight setting and Intelligent Sensor (room light condition). Range 0.37V to 3.3V.	20	¹ P-DIM	0V	0.37V~3.3V	Open
	21	12V	0V	11.88V	Open
	22	n/c	n/c	n/c	Open
	23	n/c	n/c	n/c	Open
	24	ERROR	0V	0V	Open

Diode Mode values taken with all Connectors Removed

Main Board Connector P7800 to T-CON/3D P802 Voltage and Diode Check

P7800 Connector "Main" to "T-CON/3D" P802


There are no Stand-By Voltages for the Connector Diode Mode values taken with all Connectors Removed

Pin	Label	Run	Diode Check
1	PANEL_VCC	11.59V	Open
2	PANEL_VCC	11.59V	Open
3	PANEL_VCC	11.59V	Open
4	PANEL_VCC	11.59V	Open
5	n/c	n/c	n/c
6	Gnd	Gnd	Gnd
7	Gnd	Gnd	Gnd
8	Gnd	Gnd	Gnd
9	Gnd	Gnd	Gnd
10	Gnd	Gnd	Gnd
11	RRXB4+	1.09V	0.97V
12	RRXB4-	1.26V	1.15V
13	RRXB3+	1.14V	0.97V
14	RRXB3-	1.22V	1.15V
15	Gnd	Gnd	Gnd
16	RRXBCK+	1.2V	0.97V
17	RRXBCK-	1.16V	1.15V

Pin	Label	Run	Diode Check
18	Gnd	Gnd	Gnd
19	RRXB2+	1.14V	0.97V
20	RRXB2-	1.2V	1.15V
21	RRXB1+	1.16V	0.97V
22	RRXB1-	1.19V	1.15V
23	RRXB0+	1.19V	0.97V
24	RRXB0-	1.19V	1.15V
25	n/c	n/c	n/c
26	Gnd	Gnd	Gnd
27	RRXA4+	1.08V	0.97V
28	RRXA4-	1.26V	1.15V
29	RRXA3+	1.14V	0.97V
30	RRXA3-	1.2V	1.15V
31	Gnd	Gnd	Gnd
32	RRXACK+	1.2V	0.97V
33	RRXACK-	1.16V	1.15V
34	Gnd	Gnd	Gnd

Pin	Label	Run	Diode Check
35	RRXA2+	1.14V	0.97V
36	RRXA2-	1.22V	1.15V
37	RRXA1+	1.17V	0.97V
38	RRXA1-	1.19V	1.15V
39	RRXA0+	1.19V	0.97V
40	RRXA0-	1.17V	1.15V
41	n/c	n/c	n/c
42	3D_DIM_2	0.05V	1.03V
43	3D_DIM	0V	1.03V
44	3DTV	0V	Open
45	n/c	n/c	n/c
46	FRC_RESET	3.32V	Open
47	SCL3_3.3V	3.34V	1.04V
48	SDA3_3.3V	3.34V	1.04V
49	V_SYNC	3.33V	0.998V
50	*3D_Sync_Out	0.03V	Open
51	Gnd	Gnd	Gnd

*Pin 50 Only active when a 3D source is played. (1.63V)

102

September LCD TV 47LX9500

3D-Sync

Main Board P8200 to (Ft. IR/Intelligent Sensor) Voltage and Diode Check

P8200 Connector "MAIN Board" To J1 "IR Board"

Pin Label **STBY** Run **Diode Check** ¹SCL 1 3.45V 3.37V Open ¹SDA 2 3.45V 3.37V Open Gnd Gnd 3 Gnd Gnd KEY 1 3.45V 3.37V 1.86V 4 KEY 2 5 2.76V 2.7V 1.86V 6 3.5V_ST 3.46V 3.37V 1.18V 7 Gnd Gnd Gnd Gnd 8 LED LOGO 0.82V 0V 2.2V ²IR 1.57V 9 1.52V Open 10 Gnd Gnd Gnd Gnd 0.51V 11 +3.3V Normal **0V** 3.33V 12 LED_R/BUZZ **0**V **0**V Open

P8200

 $^{(1)}$ Clock pulses only present when Intelligent Sensor is turned on. (3.7V p/p) $^{(2)}$ IR pulses (2.5V p/p)

Diode Mode values taken with all Connectors Removed

Main P7900 / P7901 to Inverters and P2200 (Voltage and Diode Check)

Inverter Run voltages taken with built in test pattern white or black where indicated.

P7900 "Main" to "Inverter Main" CN11

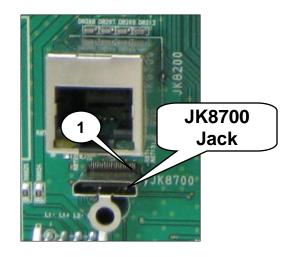
P7901	"Main"	to	"Inverter	Secondary"	CN103
-------	--------	----	-----------	------------	-------

Pin	Label	STBY	Run *White to Black	Diode Check
1	L_VS	0V	0.059V	1.05V
2	M0_MOSI	0V	*0.04V~3.26V	1.05V
3	M0_SCLK	0V	0.42V	1.05V
4	GND	GND	GND	GND
5	M1_MOSI	0V	*0.04V~3.26V	1.05V
6	M1_SCLK	0V	0.42V	1.05V
7	GND	GND	GND	GND
8	S_CS_N	0V	1.96V	1.05V
9	S_MOSI	0V	*0.15V~0.32V	1.05V
10	S_SCLK	0V	2.72V	1.05V

Pin	Label	STBY	Run *White to Black	Diode Check
1	R_VS	0V	0.04V	1.08V
2	Gnd	Gnd	Gnd	Gnd
3	M2_MOSI	0V	*0.04V~3.2V	1.08V
4	M2_SCLK	0V	0.23V	1.08V
5	Gnd	Gnd	Gnd	Gnd
6	M3_MOSI	0V	0V	1.07V
7	M3_SCLK	0V	0V	1.07V
8	Gnd	Gnd	Gnd	Gnd

P2200 "Main" To "LG LOGO"

Pin	LABEL	SBY	Run	Diode Check
1	3.5V_ST	3.46V	3.37V	Open
2	Gnd	Gnd	Gnd	Gnd
3	Logo Drive	2.19V	0.69V	Open
4	Gnd	Gnd	Gnd	Gnd


Diode Mode values taken with all Connectors Removed

Main JK8700 Wireless Media Box Dongle Jack (Voltage and Diode Check)

Pin	Label	STBY	Run	Diode Check
1-6	*24V	0V	24.65V	Open
7	Detect	0V	0.3V	2.8V
8	Interrupt	0V	3.3V	Open
9	Gnd	0V	Gnd	Gnd
10	n/c	0V	3.3V	Open
11	Gnd	0V	Gnd	Gnd
12	I2C_SCL	0V	3.3V	1.04V
13	I2C_SDA	0V	3.3V	1.04V
14	Gnd	0V	Gnd	Gnd
15	Wireless_RX	0V	3.3V	1.8V
16	Wireless_TX	0V	3.3V	1.8V
17	Gnd	0V	Gnd	Gnd
18	IR	0.67V	3.3V	Open
19-20	Gnd	0V	Gnd	Gnd

JK8700 Jack "MAIN Board" To "Wireless Dungle"

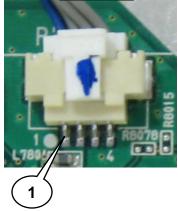
Voltages with Wireless Media Box Dongle plugged in. (Use Dongle side to read voltages. Remove cover). *24V Switched from Q8701 Drain Back side of the board. Q8701 turned on by Q8700 front side of the board. Q8700 turned on by Microprocessor pin 38.

Diode Mode values taken

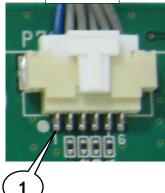
with all Connectors

Removed

105

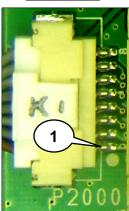

Main P7802, P7803 to T-CON/3D board (Voltage and Diode Check)

Pin	LABEL	SBY	Run	Diode Check
1	PANEL_VCC	0V	11.55V	Open
2	PANEL_VCC	0V	11.55V	Open
3	Gnd	Gnd	Gnd	Gnd
4	Gnd	Gnd	Gnd	Gnd


P7803 "Main" To "T-CON/3D" P807

Pin	LABEL	SBY	Run	Diode Check
1	Gnd	Gnd	Gnd	Gnd
2	E_TCK	0V	0V	Open
3	E_TDO	0V	3.33V	Open
4	E_TMS	0V	0.35V	Open
5	E_TDI	0V	3.32V	Open
6	Gnd	Gnd	Gnd	Gnd

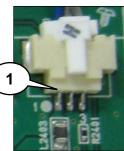
Diode Mode values taken with all Connectors Removed



Main P2000 and P2401 Connectors (Voltage and Diode Check)

Pin	Label	STBY	Run	Diode Check
1	3.3V_Normal	0V	3.33V	0.51V
2	Gnd	Gnd	Gnd	Gnd
3	M_REMOTE_RX	0V	3.3V	Open
4	M_REMOTE_TX	0V	3.3V	Open
5	M_RFModule_Reset	0V	3.05V	Open
6	DC	0V	2.98V	Open
7	DD	0V	2.98V	Open
8	Gnd	Gnd	Gnd	Gnd

P2000 "MAIN Board" To J4 "Ft IR" for Motion Remote Sensor



P2401 "Main" To "3D-Emitter"

Pin	LABEL	SBY	Run	Diode Check
1	+5V_EMITTER	0V	5.1V	Open
2	Gnd	Gnd	Gnd	Gnd
3	3D_SYNC	0V	0.03V	Open

Diode Mode values taken with all Connectors Removed

Main Board Speaker Plugs P8800, P2101, P2100 Voltage and Diode Check

P8800	"Main"	То	"Speaker	Left"
-------	--------	----	----------	-------

Pin	LABEL	SBY	Run	Diode Check
1	SPK-R(-)	0V	12.35V	Open
2	SPK-R(+)	0V	12.35V	Open
3	SPK-L(-)	0V	12.35V	Open
4	SPK-L(+)	0V	12.35V	Open

P2101 "Main" To "Speaker Right"

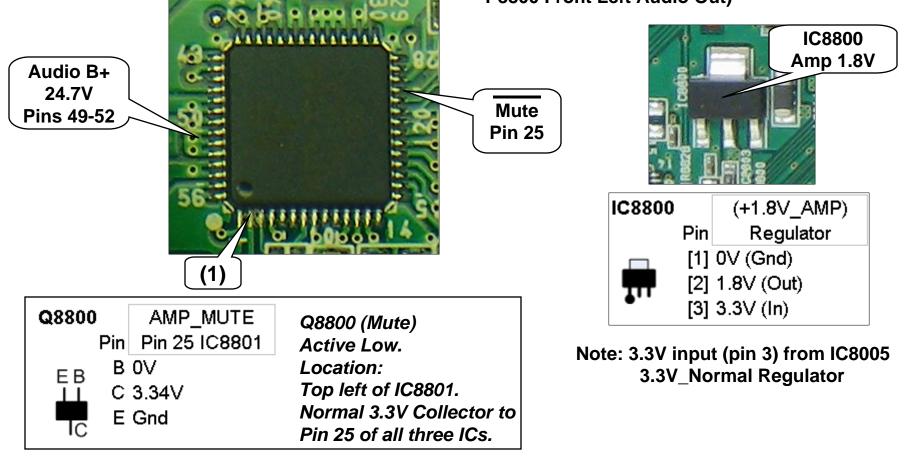
Pin	LABEL	SBY	Run	Diode Check
1	SPK2-R(+)	0V	12.35V	Open
2	SPK2-R(-)	0V	12.35V	Open
3	SPK2-R(+)	0V	12.35V	Open
4	SPK2-R(-)	0V	12.35V	Open

P2100 "Main" To "Speaker Woofer"

Pin	LABEL	SBY	Run	Diode Check
1	SPK_Woofer(-)	0V	12.35V	Open
2	SPK_Woofer(+)	0V	12.35V	Open

There are no Stand-By Voltages for the Connector Diode Mode values taken with all Connectors Removed

Main Board Audio Voltage Checks


This general information covers;

- IC2101 Woofer Audio Out)
- IC2100 Front Right Audio Out) and
- IC8801 Front Left Audio Out)

Use speaker outputs to test for defective Audio Amp Note: (Normal, ½ Audio B+ 12.35V)

Speaker Output Connectors;

- P2100 Woofer Audio Out)
- P2101 Front Right Audio Out) and
- P8800 Front Left Audio Out)

FRONT (IR, INTELLIGENT SENSOR and MOVING LED) SECTION

The Intelligent Sensor and IR board (located on the bottom left as viewed from the rear) contains the IR (Infrared Remote Sensor) and the Intelligent Sensor. This board also connects with the Soft Touch Key Board and the Center LG Logo board. The Center LG Logo lights after power on and the picture appears. Then dims down in about 2 seconds. At power off, it does the reverse.

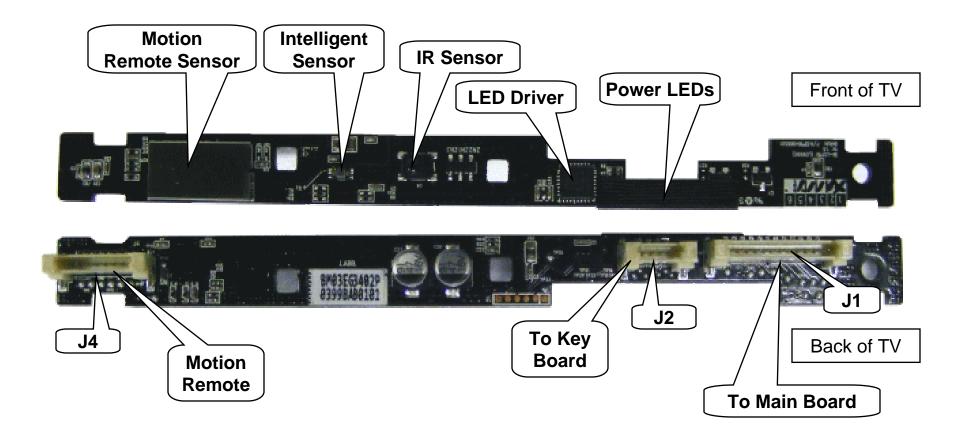
The IR board receives it operating B+ via J1 pin 6 (STBY 3.5V).

The IR (Infrared) remote receiver can be measured (1.57V) at pin 9 of connector J1 or P8200 on the Main board in Stand-By. During run pin 9 reads (1.54V).

The IR pulses (1.6V p/p) J1 pin 9 are sent to P8200 on the Main board and on to the Microprocessor (IC8101) via pin 16.

The Intelligent Sensor communicates with the Micro/Video Processor IC900 BCM Chip via clock and data lines SCL1 and SDA1 arriving on connector J1 from P8200 pins 1 and 2 on the Main board.

The Front Power LEDs are controlled by these same Clock and Data lines which communicate with the LED Driver IC on the IR board.


The Key board is routed to the IR board via CON2 and output on J1 Key 1 and Key 2 lines, (Key 1 pin 4 and Key 2 pin 5). Arriving at P8200 pins 4 and 5 on the Main Board. Then to the Microprocessor 25 and 26 lines.

NEW: This TV also has a Motion Remote which allows the customer to manipulate a pointer by pointing the Motion Remote at the screen. The Sensor for the Motion Remote is on the Front IR board.

Front IR Board (Connections Identified)

p/n EBT61093402

Front Board Connectors J1 Voltage and Diode Check

Pin	Label	STBY	Run	Diode Check
1	¹ SCL	3.45V	3.37V	Open
2	¹ SDA	3.45V	3.37V	Open
3	Gnd	Gnd	Gnd	Gnd
4	KEY 1	3.45V	3.37V	Open
5	KEY 2	2.76V	2.7V	Open
6	3.5V_ST	3.46V	3.37V	Open
7	Gnd	Gnd	Gnd	Gnd
8	LED_LOGO	0V	0.82V	Open
9	² IR	1.57V	1.52V	Open
10	Gnd	Gnd	Gnd	Gnd
11	+3.3V_Normal	0V	3.33V	Open
12	LED_R/BUZZ	0V	0V	Open

J1 "Front IR" to P8200 " MAIN"

⁽¹⁾ Pulses only present when Intelligent Sensor is turned on. (3.7V p/p)

⁽²⁾ IR pulses (2.5V p/p)

Diode Mode values taken with all Connectors Removed

Front Board Connectors J2 Key Board Voltage, Resistance and Diode Check

J2 "Front IR" to "Key Board"

Pin	Label	STBY	Run	Diode Check
1	Key 1	3.45V	3.37V	Gnd
2	Gnd	Gnd	Gnd	Gnd
3	Key 2	2.76V	2.7V	Gnd
4	Gnd	Gnd	Gnd	Gnd

Resistance when key is pressed

BUTTON	KEY LINE	RESISTANCE
CH+	Key 2	10K
CH-	Key 2	4.7K
VOL+	Key 1	10K
VOL-	Key 1	4.7K
ENTER	Key 1	270Ω
MENU	Key 1	1.82K
INPUT	Key 2	270Ω
POWER	Key 2	1.82K

Diode Mode values taken with all Connectors Removed

MOTION REMOTE SECTION

The first time the Motion Remote has it's batteries installed and pointed at the Television, the Motion Remote is synchronized with the TV. After that, when pointing the remote at the TV and pressing the Enter key, a pointer appears on screen, then by moving the Motion Remote around, the pointer moves with the movement of the remote. When the pointer is placed over a selectable button, you can press the center "Enter" button and active the object. This makes navigation much easier.

You can also adjust the volume, change channels and mute the audio with the Motion Remote.

A convenient wrist band can be attached to the remote to avoid dropping and damaging the remote.

The Motion Remote utilizes a specialized receiver to receive the IR signal and this information is then routed to P2000 and on to the BCM IC for pointer positioning and the other functions.

Motion Remote "Magic Remote" AKB73035402

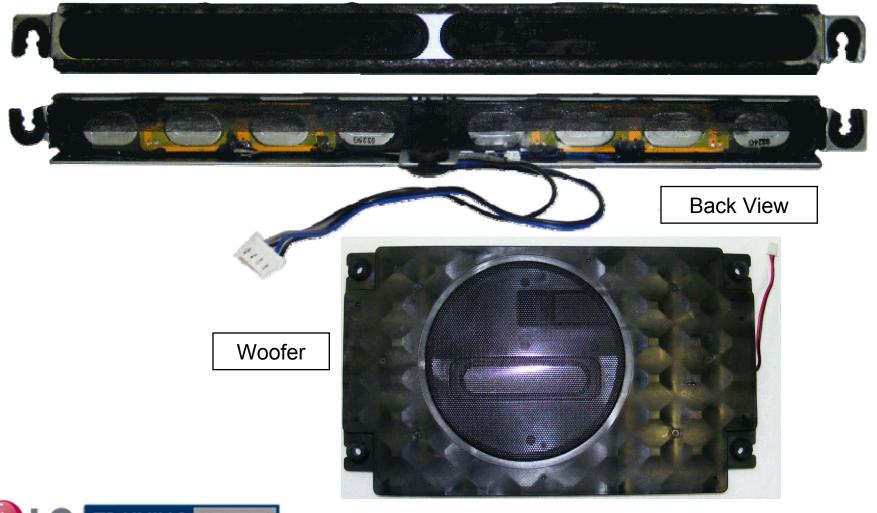
Front Board Connectors J4 Voltage and Diode Check

Pin	Label	STBY	Run	Diode Check
1	3.3V_Normal	0V	3.33V	1.17V
2	Gnd	Gnd	Gnd	Gnd
3	M_REMOTE_RX	0V	3.3V	1.95V
4	M_REMOTE_TX	0V	3.3V	1.95V
5	M_RFModule_Reset	0V	3.05V	Open
6	DC	0V	2.98V	1.96V
7	DD	0V	2.98V	1.96V
8	Gnd	Gnd	Gnd	Gnd

J4 "Front IR" to "Main Board" P2000 Motion Remote

Diode Mode values taken with all Connectors Removed

115

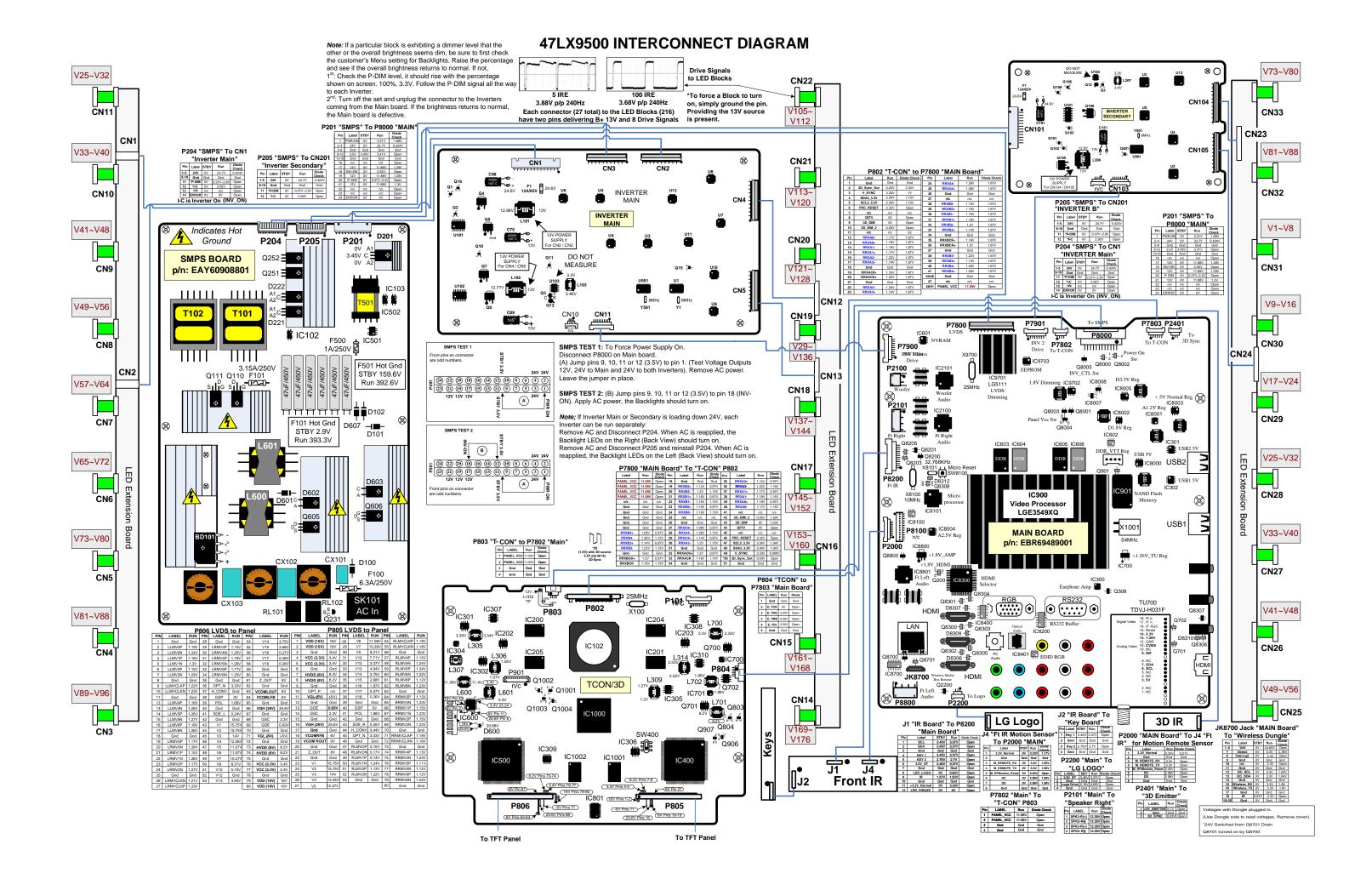

INVISIBLE SPEAKER SECTION

The 47LX9500 contains the 8 Magnet Invisible Speaker system.

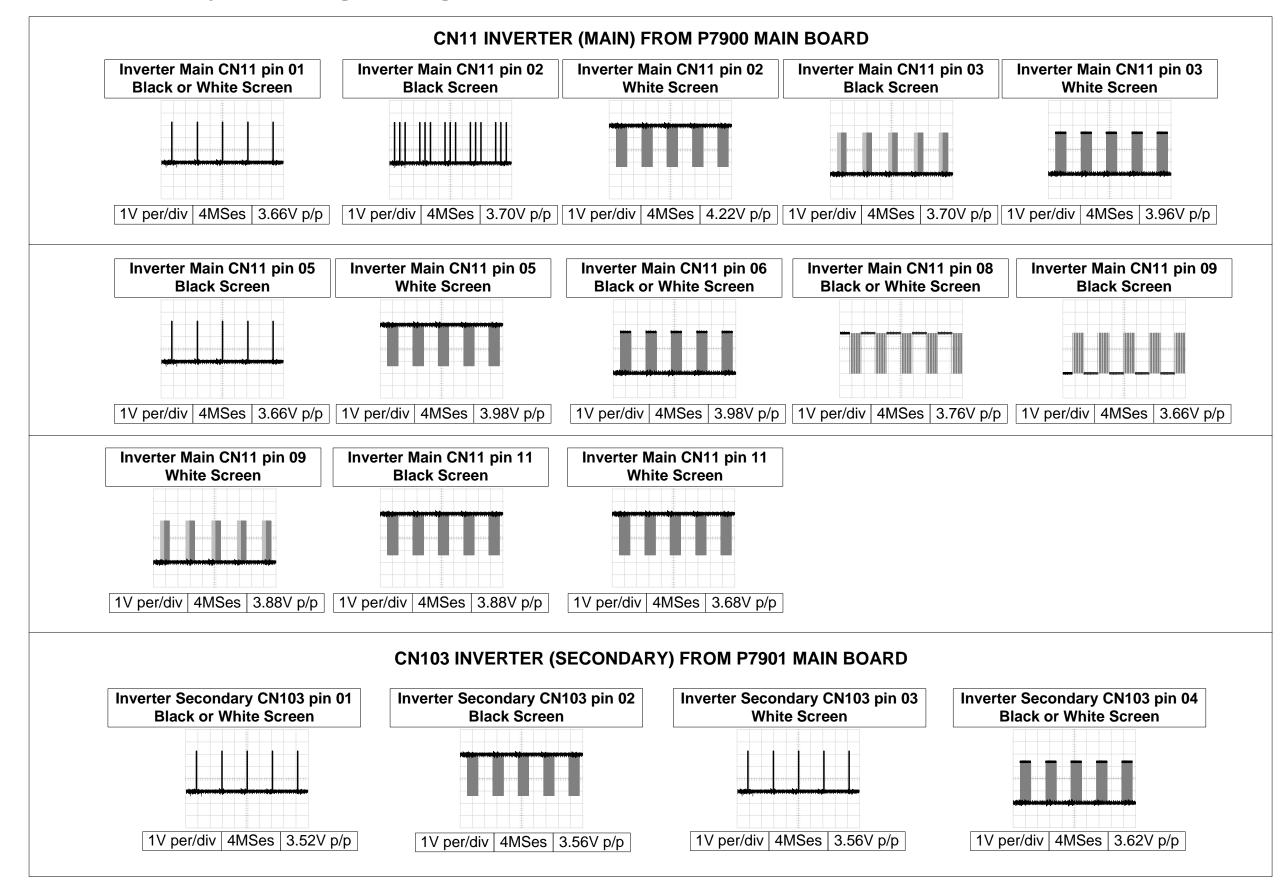
The Full Range Speakers point downward, so there is no front viewable speaker grill or air ports.

Front View

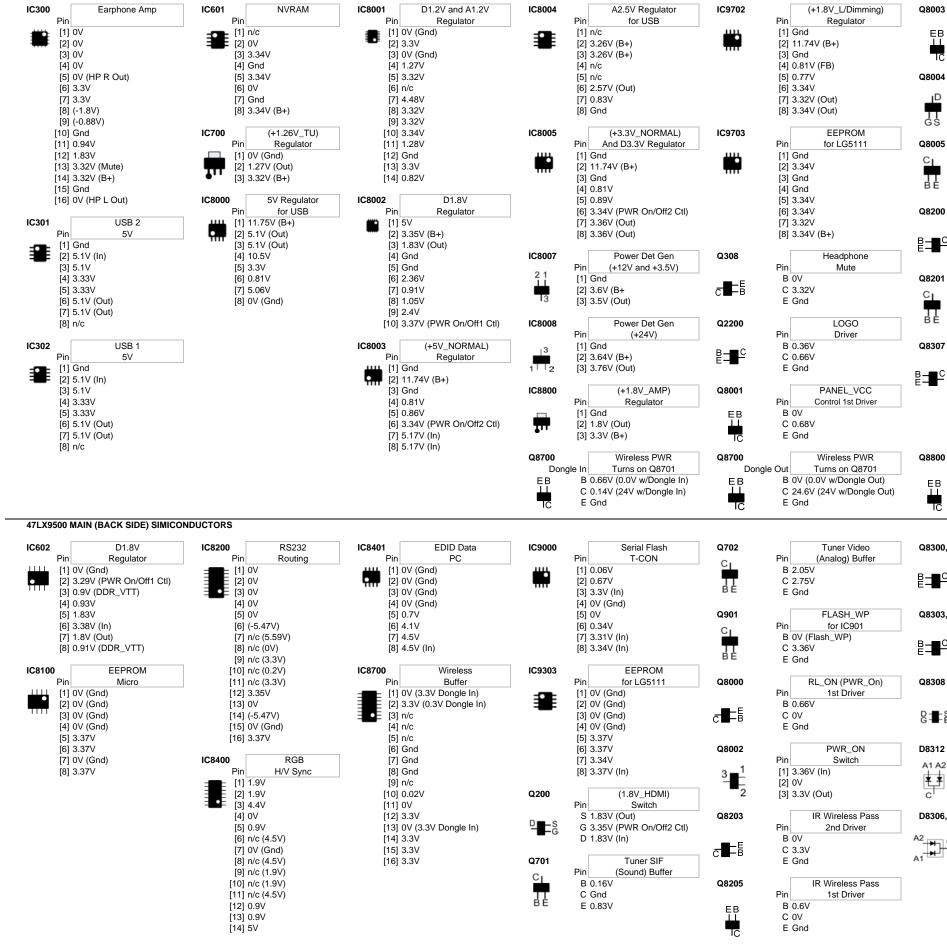
Full Range Speaker p/n EAB61353002


September LCD TV 47LX9500

INTERCONNECT DIAGRAM (11 X 17 FOLDOUT SECTION)


This section shows the 11X17 foldout that's available in the Paper and Adobe version of the Training Manual.

The Adobe version of this Training Manual allows the viewer to zoom in and out making reading of the small text easier. This Power Point shows a graphical representation of the 11 X 17 foldout page so clarity is limited.



42LE8500 Inverter Main and Secondary Local Dimming Control Signals Waveforms

47LX9500 MAIN (FRONT SIDE) SIMICONDUCTORS

C	PANEL_VCC Control 2nd Driver 0.66V 0V Gnd
G	PANEL_VCC Switch 11.62V (In) 1.8V (Enable) 11.8V (Out)
С	INV_ON Driver OV (INV ON) En 2.97V (Out) Gnd
2 с	IR Buffer 2nd 0.56V 0V Gnd
C	IR Buffer 1st 0V 3.36V Gnd
С	Side HDMI Hot Swap 0V 4.32V Gnd

00	AMP Mute to
	AMP_MUTE1 IC8801
в	B 0V
Ĩ.	C 3.34V
С	E Gnd

00,1,2,6	HDMI 2				
	Pin Det				
C	B 4.2V				
-	C 0V E Gnd				
	E Gna				
03,4,5,7	HDMI 3				
	Pin Det				
	B 0V				
C	C 4.2V				
	E Gnd				
	2 0.13				
08	CEC Remote				
	Pin HDMI CEC				
	[B] 2.72V				
- S - B	[G] 2.73V				
гв	[S] 3.27V				
	[D] 3.37V				
12	3.5V Pull Up				
A2	Pin HDMI CEC				
<u>+</u>	A1 0V				
Ŧ	C 3.26V				
	A2 3.2V				
06,7,9,10	5V Pull Up Routing				
00,7,9,10	Pin HDMI SCL/SDA				
	A1 5.04V				
76	C 4.58V				
	A2 0V				

47LX9500 T-CON/3D Component Voltages

HC202 +1.8V DDR Reg	1) Gnd 2) 3.2V 3) 0.09V 4) 0.09V 5) 1.8V 6) 3.34V 7) 1.18V 8) 0.89V	IC304 1) 0.75V 2) 5.0V 3) Gnd +2.5V 4) 0V VQ 5) 2.5V Reg 6) 5.0V 7) 7.55V 8) 11.36V 9) 11.36V	IC306 1) n/c 2) 2.5V 3) 2.51V 1V2 4) n/c Reg 5) n/c 6) 1.81V 7) 0.81V 8) Gnd	IC600 DC-DC Conv 1) 5.96V 25) 11.38V 2) 6.03V 3) 3.15V 4) 0.17V 28) 0V 5) 2.72V 29) 4.24V	IC701 1) Gnd 2) 11.68V DC-DC 3) 5.26V Conv 4) 0.73V For 5) 0.58V HVDD 6) 1.97V 7) 0.59V 8) 1.20V 9) Gnd
IC203 +1.8V DDRS Reg	1) Gnd 2) 3.27V 3) 0.89V 4) 0.9V 5) 1.8V 6) 3.34V 7) 1.8V 8) 0.9V	10) 11.36V 11) 11.36V 12) 2.55V 13) Gnd 14) Gnd 15) 2.55V 16) Gnd 17) Gnd 18) Gnd	IC307 1) n/c 2) 2.49V 3) 2.51V +1.8V 4) n/c DDR 5) n/c Reg 6) 1.81V 7) 0.81V 8) Gnd IC308 1) n/c	6) 3.3V 30) 1.9V 7) 0V 31) 0.59V 8) 25.6V 32) 3.3V 9) 24.7V 33) 3.13V 10) 1.26V 34) 0V 11) Gnd 35) 0V 12) 5.54V 36) 0V 13) 0V 37) 11.33V 14) 0V 38) 11.37V	10) 5.20V 11) 1.40V 12) 13.1V 13) 8.10V 14) 11.68V IC801 1) 8.01V 2) 15.7V 3) 15.7V
IC301 +3.3V Reg	1) 11.41V 2) 3.35V 3) 3.35V 4) 8.77V 5) 3.11V 6) 0.81V 7) 5.02V 8) Gnd	19) Gnd 20) 2.5V 21) 2.5V 22) n/c 23) 0V 24) 2.5V 25) n/c 26) Gnd 27) 1.13V	2) 2.47V 3) 2.49V +1.8V 4) n/c DDRS 5) n/c Reg 6) 1.8V 7) 0.8V 8) Gnd IC309 1) Gnd	15) Gnd39) n/c16) 0V40) n/c17) 1.26V41) 1.27V18) 4.24V42) 16V19) Gnd43) 5.96V20) Gnd44) 5.96V21) 1.27V45) 5.96V22) 11.45V46) 5.96V23) 3.4V47) Gnd	Data 5) 13.35V Buffer 6) 12.27V 7) 11.07V 8) Gnd 9) 16.02V 10) 10.28V 11) 8.31V 12) 7.72V
IC302 +1.0V VDC Reg	1) 0.8V 2) Gnd 3) 3.33V 4) 4.26V 5) 3.3V 6) 1.08V 7) 1.08V 8) 3.0V	28) 10.99V IC305 1) 0.8V 2) Gnd 3) 3.32V 1V2 4) 4.32V Reg 5) 3.3V 6) 1.22V 7) 1.22V 8) 2.98V	 2) 3.26V 3) 0.89V 4) 0.9V VTT 5) 1.8V Reg 6) 3.34V 7) 1.8V 8) 0.9V IC310 1) 11.41V 2) 2.53V 3) 2.53V 2V5 4) 7.97V Reg 5) 3.11V 6) 0.8V 7) 5.07V 8) Gnd 	$\begin{array}{c ccccc} 24) & 3.4 \lor & 48) & 5.97 \lor \\ \hline DC-DC & C700 & For +3.3 \lor \\ \hline Conv & & TCON \\ \hline 1) & 0.59 \lor & 13) & Gnd \\ 2) & 3.3 \lor & 14) & 3.6 \lor \\ 3) & 3.3 \lor & 15) & 0.12 \lor \\ 4) & 0 \lor & 16) & 5.21 \lor \\ 5) & 4.26 \lor & 17) & 0.6 \lor \\ 6) & Gnd & 18) & 1.13 \lor \\ 7) & 1.8 \lor & 19) & 1.18 \lor \\ 8) & 7 \lor & 20) & Gnd \\ 9) & 2.7 \lor & 21) & 11.4 \lor \\ 10) & 4.78 \lor & 22) & 0.56 \lor \\ 11) & 8.47 \lor & 23) & 0.81 \lor \\ 12) & 3.33 \lor & 24) & 0.9 \lor \\ \end{array}$	13) 3.33V 14) 3.33V 15) 3.33V 16) Gnd 17) 0V 18) Gnd 19) 4.94V 20) 3.75V 21) 2.67V 22) 16.02V 23) 0V 24) Gnd 25) 0.27V 26) 0.27V 27) 0.25V 28) 5.96V

Q80 C B^{TT}F

Q90

Q90

Q100

Q100

Q100 LC B^{IT}E

Q803 ⊌ ^C ₽ Q804	 B) 2.52V E) 2.52V C) 2.27V B) 2.52V E) 2.52V C) 2.27V 	Q700 +3.3V TCON Reg	1) Gnd 2) 3.26V 3) 3.33V 4) 4.79V 5) 11.42V 6) 11.42V 7) 3.34V 8) 3.34V
Q906 ᢪ ⊒ ≏	B) 0.61V E) Gnd C) 0.03V	Q701 ### +8.2V HVDD	1) Gnd 2) 1.42V 3) 8.16V 4) 11.7V 5) 11.42V
Q907	B) 0.0V E) Gnd C) 1.9V	Reg	6) 11.42V 7) 8.2V 8) 8.2V
Q1001	B) 0V E) Gnd C) 1.97V	Q702 +1.8V TCON Reg	1) Gnd 2) 4.27V 3) 1.89V 4) 2.72V 5) 11.41V 6) 11.41V
Q1002 ^c ∎ _B ^E	B) 0.6V E) Gnd C) 0.02V		7) 0V 8) 1.89V
21003 ⊌ ^{_c}	B) 0.59V E) Gnd C) 0.02V	D600	A1) 16V A2) 25.6V C) 20.68V

Q1004 B) 0.02V ^B E) Gnd C) 3.33V

Direct View LCD

This concludes the 47LX9500 training session.