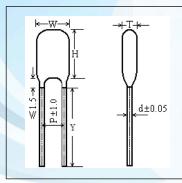


POLYPROPYLENE FILM/FOIL CAPACITOR (INDUCTIVE)

CBB11


FEATURES

- Film/foil capacitor, inductive wound, dipped
- Excellent frequency and temperature characteristics
- Epoxy resin vacuum-dipped enhances the mechanical strength, humidity resistance

TYPICAL APPLICATIONS

Suitable for timing circuit and oscillation circuit

OUTLINE DRAWING

	Forming Lead Shapes				
The state of the s) \	III	IV		
A B B	A B B	A B B	A B B		
P ≥	F	P	< F		
0mm≤P-F≤3mm	3mm <p-f≤8mm< td=""><td>3mm<f-p≤5mm< td=""><td>0mm<f-p≤3mm< td=""></f-p≤3mm<></td></f-p≤5mm<></td></p-f≤8mm<>	3mm <f-p≤5mm< td=""><td>0mm<f-p≤3mm< td=""></f-p≤3mm<></td></f-p≤5mm<>	0mm <f-p≤3mm< td=""></f-p≤3mm<>		
F±1.0mm; A≤5.0mm; B=4.5±0.5mm					

SPECIFICATIONS

Reference Standard	GB 10188(IEC 60384–13)	
Climatic Category	40/100/21	
Rated temperature	85℃	
Operating Temperature	-40°C~105°C (+85°C to +105°C: decreasing factor 1.25% per °C for VR(DC))	
Rated Voltage	50/63/100V	
Capacitance Range	0.0010 μ F ~ 0.10 μ F	
Capacitance Tolerance	±2%(G), ±5%(J), ±10%(K)	
Voltage Proof	2.0U _R (5 _s)	
Dissipation Factor	≤10×10 ⁻⁴ (1kHz, 20°C)	
Insulation Resistance	≥50000MΩ (20℃, 10V,1min)	

TEST METHOD AND PERFORMANCE

ILSI	WETHOD AND PERFORMANCE				
No.	Item		Performance	Test method (IEC60384-2)	
1	Solderability		Good quality of tinning	Solder temperature: 245°C ± 5°C Immersion time: 2.0s ± 0.5s	
2	Terminal strength		There shall be no visible damage $\triangle C/C \leqslant \pm 2\% \text{(relative to the initial value)}$	Tension Ua1: Pull: Φd=0.5mm,5N	
3	Resistance to solder heat		There shall be no visible damage, legible marking $\triangle C/C \le \pm 2\%$ (relative to the initial value)	Solder temperature:260°C ± 5°C Immersion time: 10s ± 1s	
4	Rapid change of temperature		There shall be no visible damage $\triangle C/C \le \pm 2\%$ (relative to the initial value) Tg $\delta : \le 0.0010 (1 \text{kHz})$	θ _A =-40°C, θ _B =+85°C 5 cycles Duration: t=30min	
5	Vibration		There shall be no visibledamage. $\triangle C/C \le \pm (2\% + 2pF)$ (relative to the initial value) Tg $\delta : \le 0.0010(1kHz)$	Amplitude 0.75mm or acceleration 98m/s² (whichever is the smaller severity), f: 10Hz to 500Hz.Three directions, 2h for each direction, total 6h.	
6	Bump		There shall be no visibledamage. $\triangle C/C \leqslant \pm (2\% + 2pF)$ (relative to the initial value) Tg $\delta : \leqslant 0.0010(1kHz)$	4000 times, Acceleration: 390m/s², Pulse duration, 6ms	
	Climate sequence	Dry heat		+85℃, 16h	
7		Damp heat,Cyclic		Test Db, Severity: b, the first cycle	
		Cold		-40℃, 2h	

No.		Item	Performance	Test method (IEC60384-2)
		Low air pressure	There shall be no permanent breakdown, flashover or other harmful deformation when applying U _R at the last 5 minute.	15℃~ 35℃, 8.5kPa, 1h,
7	Climate sequence		There shall be no evidence of deterioration and the marking shall be legible. □ \(\sigma C/C \leq \pm (2\% + 2\pm F)\)(relative to the initial value) Tg \(\sigma : \leq 0.0010\) or 1.4times initial value (whichever is the greater) I.R.: \(\geq 50\)% of the rated value	Test Db, Severity b, the other cycles
8 Damp heat steady state		t steady state	There shall be no visible damage and the marking shall be legible., △C/C≤ ± (2%+2pF)(relative to the initial value) Tg 8:≤0.0010 or 1.4times initial value (whichever is the greater) I.R.:≥50%of the rated value	Temperature:40°C ±2°C Humidity: 93 ⁺² / ₋₃ %RH Duration: 21days
9	Endurance		There shall be no visible damage and the marking shall be legible. $\triangle C/C \leqslant \pm (2\% + 2pF) (\text{relative to the initial value})$ $Tg \delta : \leqslant 0.0010 \text{or} 1.4 \text{times initial value} $ (whichever is the greater) I.R.: $\geqslant 50\%$ of the rated value	Temperature: +85℃ Voltage: 1.25 × U _R Duration: 1 000h
10	Temperature characteristic		$\label{eq:main_continuous} \begin{split} &\text{Measuring capacitance and temperature} \\ &\text{at test point a, b, d, f, g.:} \\ &1. \text{Temperature coefficient of the} \\ &\text{capacitance}(\alpha) : \text{At lower category} \\ &\text{Temperature:} \alpha_{\text{b}} = \frac{C_{\text{b}} - C_{\text{d}}}{C_{\text{g}}(\theta_{\text{b}} - \theta_{\text{g}})} \\ &\text{At upper category} \\ &\text{Temperature:} \alpha_{\text{f}} = \frac{C_{\text{r}} - C_{\text{d}}}{C_{\text{g}}(\theta_{\text{f}} - \theta_{\text{g}})} \\ &-500 \times 10^{-6} / ^{\circ}\text{C} \leqslant \alpha_{\text{b}} \text{ and } \alpha_{\text{f}} \leqslant 0 \times 10^{-6} / ^{\circ}\text{C} \\ &2. \text{Temperature cycle excursion of the capacitance (\delta):} \\ &\delta_{\text{da}} = \frac{C_{\text{d}} - C_{\text{a}}}{C_{\text{d}}} \text{ , } \delta_{\text{gd}} = \frac{C_{\text{g}} - C_{\text{d}}}{C_{\text{d}}} \\ &\delta_{\text{ga}} = \frac{C_{\text{g}} - C_{\text{a}}}{C_{\text{d}}} \\ &\delta_{\text{ga}}, \delta_{\text{gd}}, \delta_{\text{gd}} \leqslant \pm (2\% + 2\text{PF}) \end{split}$	Static method: The Capacitors should be kept at the following temperature in turn: $a(20\pm2)^{\circ}\mathbb{C},b(-40\pm3)^{\circ}\mathbb{C},d(20\pm2)^{\circ}\mathbb{C},f(85\pm2)^{\circ}\mathbb{C},g(20\pm2)^{\circ}\mathbb{C}$