DatasheetDirect.com

Your dedicated source for free downloadable datasheets.

- Over one million datasheets
- Optimized search function
- Rapid quote option
- Free unlimited downloads

Visit <u>www.datasheetdirect.com</u> to get your free datasheets.

This datasheet has been downloaded by http://www.datasheetdirect.com/

THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

DS3582-3.1

MA6116 & MA6216

RADIATION HARD 2048 x 8 BIT STATIC RAM

The MA6116 16k Static RAM is configured as 2048 x 8 bits and manufactured using CMOS-SOS high performance, radiation hard, $3\mu m$ technology. The MA6216 is manufactured using 2.5 μm technology resulting in faster performance.

The design uses a 6 transistor cell and has full static operation with no clock or timing strobe required. Address input buffers are deselected when chip select is in the HIGH state.

Operation Mode	<u>CS</u>	<u>OE</u>	<u>WE</u>	I/O	Power
Read	L	L	Н	D OUT	
Write	L	Н	L	D IN	ISB1
Write	L	L	L	D IN	
Standby	Н	Х	Х	High Z	ISB2

Figure 1: Truth Table

FEATURES

- 3µm CMOS-SOS Technology
- Latch-up Free
- Fast Access Time 110ns (MA6116) and 85ns (MA6216) Typical
- Total Dose 10⁶ Rad(Si)
- Transient Upset >1010 Rad(Si)/sec
- SEU <10⁻¹⁰ Errors/bitday
- Single 5V Supply
- Three State Output
- Low Standby Current 100µA Typical
- -55°C to +125°C Operation
- TTL and CMOS Compatible Inputs
- Fully Static Operation

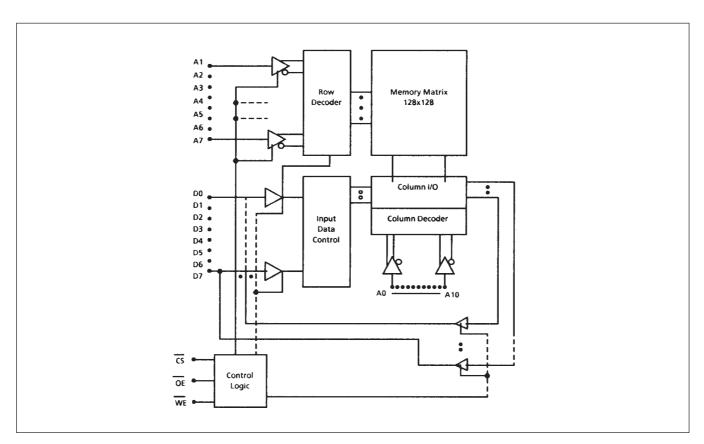


Figure 2: Block Diagram

CHARACTERISTICS AND RATINGS

Symbol	Parameter	Min.	Max.	Units
V_{DD}	Supply Voltage	-0.5	7	V
VI	Input Voltage	-0.3	V _{DD} +0.3	V
T _A	Operating Temperature	-55	125	°C
T _S	Storage Temperature	-65	150	°C

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions, or at any other condition above those indicated in the operations section of this specification, is not Implied Exposure to absolute maxlmum rating conditions for extended perlods may affect device reliability.

Figure 3: Absolute Maximum Ratings

Notes for Tables 4 and 5:

- 1. Characteristics apply to pre radiation at T_A = -55°C to +125°C with V_{DD} = 5V $\pm 10\%$ and to post 100k Rad(Si) total dose radiation at T_A = 25°C with V_{DD} = 5V $\pm 10\%$ (characteristics at higher radiation levels available on request).
- 2. Worst case at $T_A = +125^{\circ}$ C, guaranteed but not tested at $T_A = -55^{\circ}$ C. 3. GROUP A SUBGROUPS 1, 2, 3.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD}	Supply voltage	-	4.5	5.0	5.5	V
V _{IH}	Input High Voltage	-	V _{DD} /2	-	V _{DD}	V
V _{IL}	Input Low Voltage	-	V _{SS}	-	0.8	V
V _{OH}	Output High Voltage	I _{OH1} = -1mA	2.4	-	-	V
V _{OL}	Output Low Voltage	I _{OL} = 4mA	-	-	0.4	V
ILI	Input Leakage Current (note 2)	All inputs except <u>CS</u>	-	-	±10	μΑ
I _{LO}	Output Leakage Current (note 2)	Output disabled, $V_{OUT} = V_{SS}$ or V_{DD}	-	-	±20	μΑ
I _{DD}	Power Supply Current	f _{RC} = 1MHz, <u>CS</u> = 50% mark:space	-	20	40	mA
I _{SB1}	Selected Supply Current	All inputs = V_{DD} -0.2V except $\underline{CS} = V_{SS}$ +0.2V	-	50	70	mA
I _{SB2}	Standby Supply Current	Chip disabled, $\underline{CS} = V_{DD}$ -0.2V	-	0.1	5	mA

Figure 4: Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{DR}	V _{CC} for Data Retention	$\underline{CS} = V_{DR}$	2.0	-	-	V
I _{DDR}	Data Retention Current	$\underline{CS} = V_{DR}, V_{DR} = 2.0V$	-	50	3000	μΑ

Figure 5: Data Retention Characteristics

AC CHARACTERISTICS

Conditions of Test for Tables 5 and 6:

- 1. Input pulse = V_{ss} to 3.0V.
- 2. Times measurement reference level = 1.5V.
- 3. Output load 1TTL gate and $C_L = 60 pF$.
- 4. Transition is measured at ± 500 mV from steady state.
- 5. This parameter is sampled and not 100% tested.

Notes for Tables 6 and 7:

Characteristics apply to pre-radiation at T_A = -55°C to +125°C with V_{DD} = 5V±10% and to post 100k Rad(Si) total dose radiation at T_A = 25°C with V_{DD} = 5V ±10%. GROUP A SUBGROUPS 9, 10, 11.

		MA6116		MA6216			
Symbol	Parameter	Min	Max	Min	Max	Units	
T _{AVAVR}	Read Cycle Time	150	-	100	-	ns	
T _{AVQV}	Address Access Time	-	130	-	95	ns	
T _{ELQV}	Chip Select Access Time	-	140	-	100	ns	
T _{ELQX} (4,5)	Chip Select to Output in Low Z	10	-	10	-	ns	
T_{GLQV}	Output Enable to Output Valid	-	80	-	60	ns	
T _{GLQX} (4,5)	Output Enable to Output in Low Z	10	-	10	-	ns	
T _{EHQZ} (4,5)	Chip Deselect to Output in High Z	0	60	0	50	ns	
T _{GHQZ} (4,5)	Chip Disable to Output in High Z	0	60	0	50	ns	
T _{AXQX}	Output Hold from Address Change	10	-	10	-	ns	

Figure 6: Read Cycle AC Electrical Characteristics

		MA6116		MA6216			
Symbol	Parameter	Min	Max	Min	Max	Units	
T_{AVAVW}	Write Cycle Time	150	-	100	-	ns	
T_{ELWH}	Chip Selection to End of Write	85	-	75	-	ns	
T_{AVWH}	Address Valid to End of Write	80	-	70	-	ns	
T_{AVWL}	Address Set Up Time	20	-	10	-	ns	
T_WLWH	Write Pulse Width	50	-	40	-	ns	
T_{WHAV}	Write Recovery Time	5	-	5	-	ns	
T _{WLQZ} (4,5)	Write to Output in High Z	0	60	0	50	ns	
T_{DVWH}	Data to Write Time Overlap	30	-	25	-	ns	
T_{WHDX}	Data Hold from Write Time	10	-	10	-	ns	
T _{WHQX} (4,5)	Output Active from End to Write	5	-	5	-	ns	
T _{ELWL}	Chip Selection to Write Low	25	-	25	-	ns	

Figure 7: Write Cycle AC Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Input Capacitance	V ₁ = 0V	-	6	10	pF
C _{OUT}	Output Capacitance	V ₀ = 0V	-	5	7	pF

Note: $T_A = 25$ °C and f = 1MHz. Data obtained by characterisation or analysis; not routinely measured.

Figure 8: Capacitance

Parameter	Conditions
Basic Functionality	$V_{DD} = 4.5V - 5.5V$, FREQ = 1MHz
	$V_{IL} = V_{SS}, V_{IH} = V_{DD}, V_{OL} \le 1.5V, V_{OH} \ge 1.5V$
	TEMP = -55°C to +125°C, GPS PATTERN SET
	GROUP A SUBGROUPS 7, 8A, 8B

Figure 9: Functionality

Subgroup	Definition
1	Static characteristics specified in Tables 4 and 5 at +25°C
2	Static characteristics specified in Tables 4 and 5 at +125°C
3	Static characteristics specified in Tables 4 and 5 at -55°C
7	Functional characteristics specified in Table 9 at +25°C
8A	Functional characteristics specified in Table 9 at +125°C
8B	Functional characteristics specified in Table 9 at -55°C
9	Switching characteristics specified in Tables 6 and 7 at +25°C
10	Switching characteristics specified in Tables 6 and 7 at +125°C
11	Switching characteristics specified in Tables 6 and 7 at -55°C

Figure 10: Definition of Subgroups

TIMING DIAGRAMS

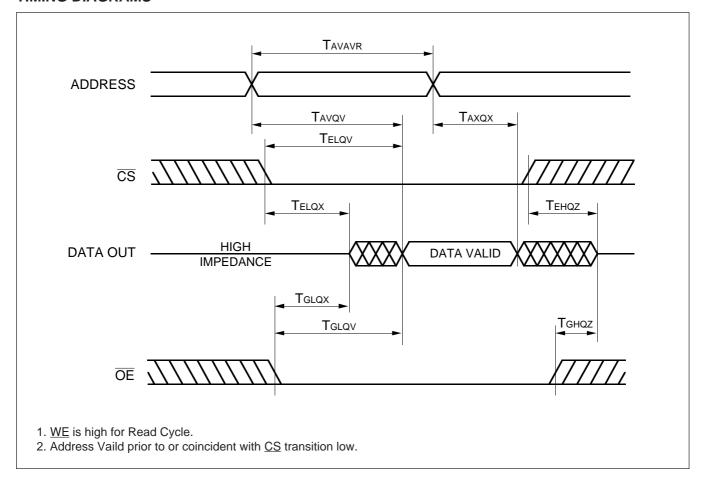


Figure 11a: Read Cycle 1

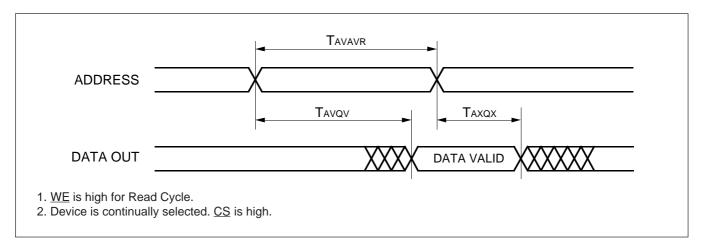
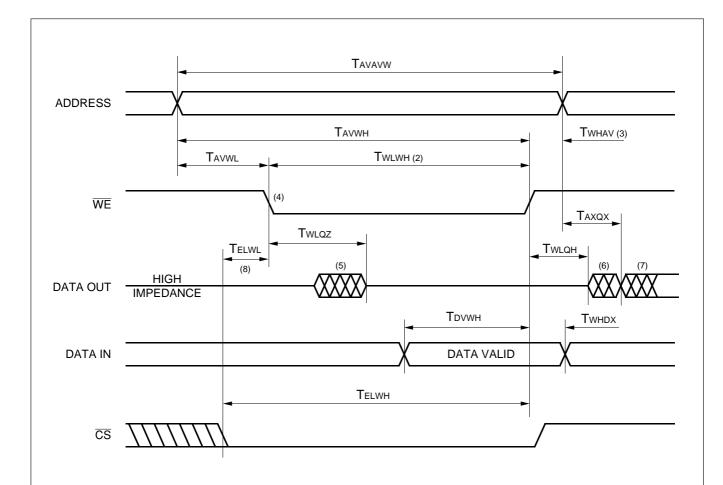



Figure 11b: Read Cycle 2

- 1. $\underline{\text{WE}}$ must be high during all address transitions.
- 2. A write occurs during the overlap (T_{WLWH}) of a low \underline{CS} and a low \underline{WE} .
- 3. T_{WHAV} is measured from either <u>CS</u> or <u>WE</u> going high, whichever is the earlier, to the end of the write cycle.
- 4. If the \underline{CS} low transition occurs simultaneously with, or after, the \underline{WE} low transition, the output remains in the high impedance state.
- 5. DATA OUT is in the active state, so DATA IN must not be in opposing state.
- 6. DATA OUT is the write data of the current cycle, if selected.
- 7. DATA OUT is the read data of the next address, if selected.
- 8. T_{ELWL} must be met to prevent memory corruption.
- 9. <u>OE</u> is low. (If <u>OE</u> is high then DATA OUT remains in the high impedance state throughout the cycle).

Figure 12: Write Cycle

OUTLINES AND PIN ASSIGNMENTS

Figure 13: 24-Lead Ceramic DIL (Solder Seal) - Package Style C

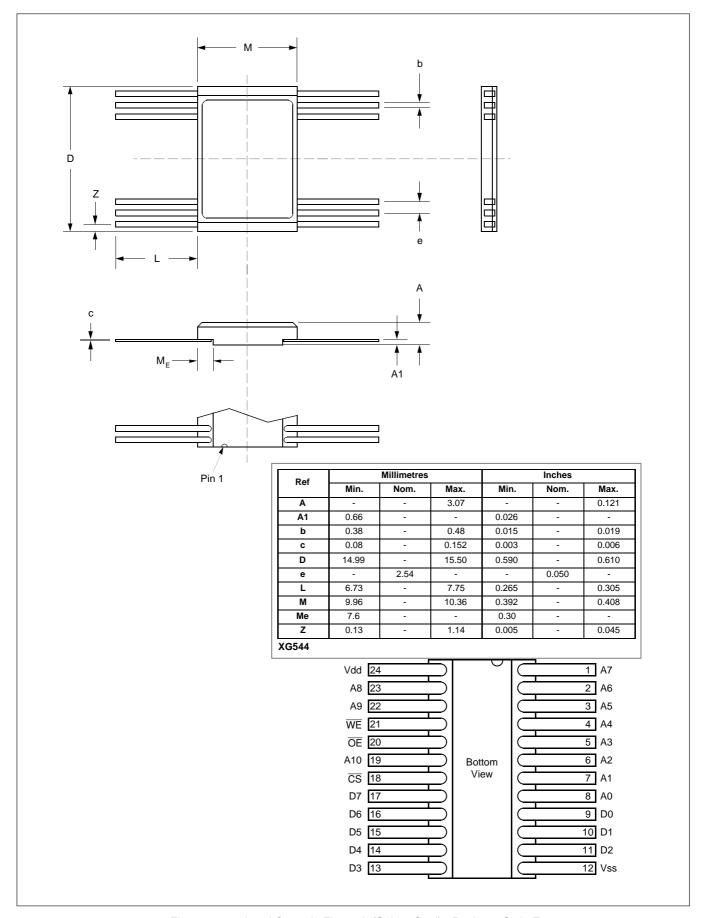


Figure 14: 24-Lead Ceramic Flatpack (Solder Seal) - Package Style F

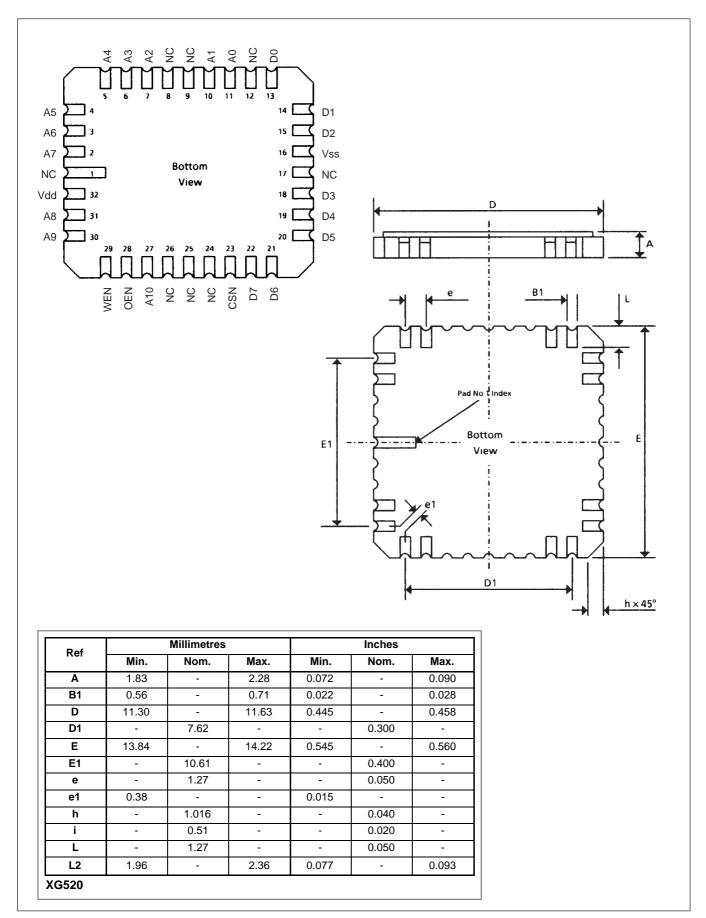


Figure 15: 32-Pad Leadless Chip Carrier - Package Style L

	Package	Options		Burnin			
Function	L	C&F	Via	Static1	Static 2	Dynamic	Radiation
A7	2	1	R	0V	5V	F7	5V
A6	3	2	R	0V	5V	F6	5V
A5	4	3	R	0V	5V	F5	5V
A4	5	4	R	0V	5V	F4	5V
A3	6	5	R	0V	5V	F3	5V
A2	7	6	R	0V	5V	F2	5V
A1	10	7	R	0V	5V	F1	5V
A0	11	8	R	0V	5V	F0	5V
D0	13	9	R	0V	5V	LOAD	5V
D1	14	10	R	0V	5V	LOAD	5V
D2	15	11	R	0V	5V	LOAD	5V
VSS	16	12	Direct	0V	0V	0V	0V
D3	18	13	R	0V	5V	LOAD	5V
D4	19	14	R	0V	5V	LOAD	5V
D5	20	15	R	0V	5V	LOAD	5V
D6	21	16	R	0V	5V	LOAD	5V
D7	22	17	R	0V	5V	LOAD	5V
CSB	23	18	R	0V	5V	0V	5V
A10	27	19	R	0V	5V	F10	5V
OEB	28	20	R	0V	5V	5V	5V
WEB	29	21	R	0V	5V	5V	5V
A9	30	22	R	0V	5V	F9	5V
A8	31	23	R	0V	5V	F8	5V
VDD	32	24	Direct	5V	5V	5V	5V

^{1.} F0=150KHz, F1=F0/2, F2=F0/4, F3=F0/8 etc.

Figure 16: Burnin and Radiation Configuration

^{2.} Burnin R=1k

^{3.} Radiation R=10k

RADIATION TOLERANCE

Total Dose Radiation Testing

For product procured to guaranteed total dose radiation levels, each wafer lot will be approved when all sample devices from each lot pass the total dose radiation test.

The sample devices will be subjected to the total dose radiation level (Cobalt-60 Source), defined by the ordering code, and must continue to meet the electrical parameters specified in the data sheet. Electrical tests, pre and post irradiation, will be read and recorded.

GEC Plessey Semiconductors can provide radiation testing compliant with MIL-STD-883 test method 1019, lonizing Radiation (Total Dose).

Total Dose (Function to specification)*	1x10 ⁵ Rad(Si)
Transient Upset (Stored data loss)	5x10 ¹⁰ Rad(Si)/sec
Transient Upset (Survivability)	>1x10 ¹² Rad(Si)/sec
Neutron Hardness (Function to specification)	>1x10 ¹⁵ n/cm ²
Single Event Upset**	3.4x10 ⁻⁹ Errors/bit day
Latch Up	Not possible

^{*} Other total dose radiation levels available on request

Figure 17: Radiation Hardness Parameters

SINGLE EVENT UPSET CHARACTERISTICS

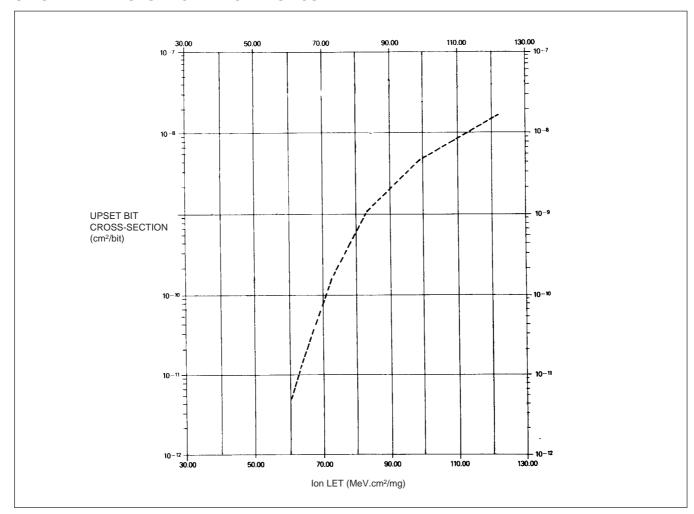
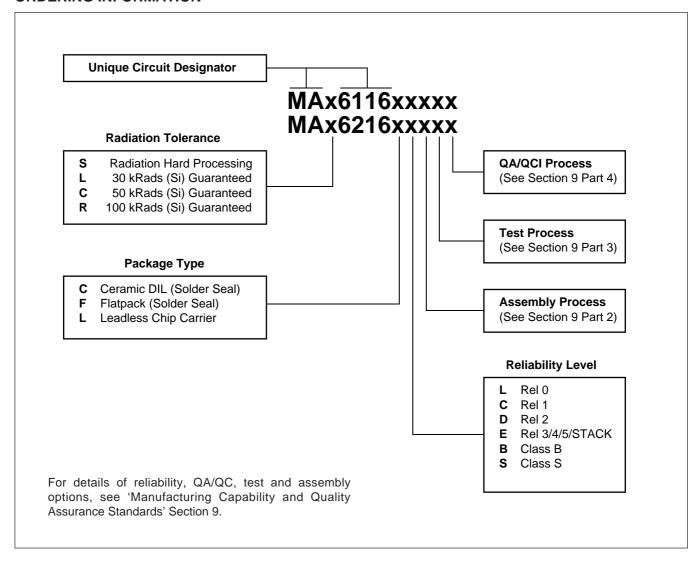



Figure 18: Typical Per-Bit Upset Cross-Section vs Ion LET

^{**} Worst case galactic cosmic ray upset - interplanetary/high altitude orbit

ORDERING INFORMATION

HEADQUARTERS OPERATIONS

GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon,

Wiltshire, SN2 2QW, United Kingdom.

Tel: (01793) 518000 Fax: (01793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017,

1500 Green Hills Road, Scotts Valley, California 95067-0017,

United States of America. Tel: (408) 438 2900

Fax: (408) 438 5576

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Fax: (1) 64 46 06 07
- GERMANY Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 7023
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- TAIWAN, ROC Taipei Tel: 886 2 5461260 Fax: 886 2 7190260
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon, UK
 Tel: (01793) 518527/518566 Fax: (01793) 518582

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1995 Publication No. DS3582-3.1 March 1995

TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

http://www.zarlink.com

World Headquarters - Canada

Tel: +1 (613) 592 0200 Fax: +1 (613) 592 1010

North America - West Coast

Tel: (858) 675-3400 Fax: (858) 675-3450

Asia/Pacific Tel: +65 333 6193

Fax: +65 333 6192

North America - East Coast

Tel: (978) 322-4800 Fax: (978) 322-4888

Europe, Middle East, and Africa (EMEA)

Tel: +44 (0) 1793 518528 Fax: +44 (0) 1793 518581

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink Semiconductor's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in an I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.