DATA SHEET

HEF4794B 8-stage shift-and-store register LED driver

Product specification
Supersedes data of 1994 Jul 01
File under Integrated Circuits, IC04

APPLICATIONS

- Automotive
- Industrial.

GENERAL DESCRIPTION

The HEF4794B is an 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel LED driver outputs O_{0} to O_{7}. Data is shifted on positive-going clock transitions. The data in each shift register stage is
transferred to the storage register when the strobe (STR) input is HIGH. Data in the storage register appears at the outputs whenever the output enable (EO) signal is HIGH.

Two serial outputs (O_{S} and Os_{s}) are available for cascading a number of HEF4794B devices. Data is available at O_{S} on positive-going clock edges to allow high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information is available at Os_{s} on the next negative-going clock edge and provides cascading HEF4794B devices when the clock rise time is slow.

ORDERING INFORMATION

TYPE NUMBER	PACKAGES			
	PINS	PIN POSITION	MATERIAL	CODE
HEF4794BT	16	SO16	plastic	SOT109-1
HEF4794BP	16	DIP16	plastic	SOT38-1

FUNCTIONAL DIAGRAM

Fig. 1 Functional diagram.

LOGIC DIAGRAMS

Fig. 3 Logic diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
STR	1	strobe input
D	2	data input
CP	3	clock input
O_{0} to O_{3}	4 to 7	parallel outputs 0 to 3 (open drain)
$\mathrm{V}_{\text {SS }}$	8	ground
$\mathrm{O}_{\mathrm{S}}, \mathrm{O}_{S^{\prime}}$	9 and 10	serial outputs
O_{7}	11	parallel output 7 (open drain)
O_{6}	12	parallel output 6 (open drain)
O_{5}	13	parallel output 5 (open drain)
O_{4}	14	parallel output 4 (open drain)
EO	15	output enable input
V_{DD}	16	supply voltage

Fig. 4 Pin configuration.

FUNCTIONAL DESCRIPTION

Table 1 Function table; note 1

INPUTS				PARALLEL OUTPUTS		SERIAL OUTPUTS	
CP	EO	STR	D	$\mathbf{O}_{\mathbf{0}}$	$\mathbf{O}_{\mathbf{n}}$	$\mathbf{O}_{\mathbf{s}}$	$\mathbf{O}_{\mathbf{s}^{\prime}}$
\uparrow	L	X	X	Z	Z	$\mathrm{O}_{6}{ }^{\prime}$	nc
\downarrow	L	X	X	Z	Z	nc	O_{7}
\uparrow	H	L	X	nc	nc	$\mathrm{O}_{6}{ }^{\prime}$	nc
\uparrow	H	H	L	L	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{6}{ }^{\prime}$	nc
\uparrow	H	H	H	H	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{6}{ }^{\prime}$	nc
\downarrow	H	H	H	nc	nc	nc	O_{7}

Note

1. $\mathrm{H}=\mathrm{HIGH}$ state;

L = LOW state;
X = don't care;
$\uparrow=$ positive-going transition;
$\downarrow=$ negative-going transition;
Z = high-impedance OFF state;
nc = no change;
$\mathrm{O}_{6}{ }^{\prime}=$ the information in the seventh shift register stage.
a) At the positive clock edge the information in the $7^{\text {th }}$ register stage is transferred to the $8^{\text {th }}$ register stage and the O_{S} output.

FAMILY DATA

See "Family Specifications" except for: rating for DC current into any open-drain output is 40 mA .

IDD LIMITS CATEGORY MSI

See "Family Specifications" for ratings.

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

SYMBOL	PARAMETER	CONDITIONS	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$						UNIT
			-40		+25		+85		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
V_{OL}	LOW level output voltage	$\begin{array}{\|l} \hline V_{1}=V_{S S} \text { or } V_{D D} ; \\ \left\|I_{0}\right\|<20 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \hline \end{array}$	-	0.75	-	0.75	-	1.5	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \left\|\mathrm{I}_{\mathrm{O}}\right\|<20 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \end{aligned}$	-	0.75	-	0.75	-	1.5	V
		$\begin{aligned} & \hline V_{I}=V_{S S} \text { or } V_{D D} ; \\ & \left\|I_{0}\right\|<20 m A ; \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	-	0.75	-	0.75	-	1.5	V
$\mathrm{l}_{\text {OzH }}$	HIGH level output leakage current; 3-state	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	2	-	2	-	15	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-	2	-	2	-	15	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	2	-	2	-	15	$\mu \mathrm{A}$

AC POWER CHARACTERISTICS

$\mathrm{V}_{\mathrm{Ss}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL FORMULA FOR P $(\mu W)^{(1)}$
P	dynamic power dissipation per package	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$1200 \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}^{2}$
		$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$	$5550 \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}^{2}$
		$\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$	$15000 \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}^{2}$

Note

1. Where:
$\mathrm{R}_{\mathrm{L}}=\infty$;
$\mathrm{f}_{\mathrm{i}}=$ input frequency (MHz);
$\mathrm{f}_{\mathrm{o}}=$ output frequency (MHz);
$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF);
$\Sigma\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs;
$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V).

AC TIMING CHARACTERISTICS

$V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$; unless otherwise specified.

SYMBOL	PARAMETER	$V_{D D}$ (V)	MIN.	TYP.	MAX.	UNIT	TYPICAL EXTRAPOLATION FORMULA
$\mathrm{t}_{\text {PHL }}$	propagation delay time CP to O_{S}; HIGH-to-LOW	5	-	160	320	ns	$132 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		10	-	65	130	ns	$53 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		15	-	45	90	ns	$37 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
$\mathrm{t}_{\text {PLH }}$	propagation delay time CP to O_{s}; LOW-to-HIGH	5	-	130	260	ns	$102 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		10	-	55	110	ns	$44 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		15	-	40	80	ns	$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
$\mathrm{t}_{\text {PHL }}$	propagation delay time CP to Os^{\prime}; HIGH-to-LOW	5	-	120	240	ns	$92 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		10	-	50	100	ns	$39 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		15	-	40	80	ns	$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
$t_{\text {PLH }}$	propagation delay time CP to Os^{\prime}; LOW-to-HIGH	5	-	130	260	ns	$102 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		10	-	60	120	ns	$49 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		15	-	45	90	ns	$37 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
$\mathrm{t}_{\text {PZL }}$	propagation delay time CP to O_{n}; OFF-to-LOW	5	-	240	480	ns	note 1
		10	-	80	160	ns	
		15	-	55	110	ns	
$t_{\text {PLZ }}$	propagation delay time CP to O_{n}; LOW-to-OFF	5	-	170	340	ns	note 1
		10	-	75	150	ns	
		15	-	60	120	ns	

SYMBOL	PARAMETER	V_{DD} (V)	MIN.	TYP.	MAX.	UNIT	TYPICAL EXTRAPOLATION FORMULA
$t_{\text {PZL }}$	propagation delay time STR to O_{n}; OFF-to-LOW	5	-	140	280	ns	note 1
		10	-	70	140	ns	
		15	-	55	110	ns	
$\mathrm{t}_{\text {PLZ }}$	propagation delay time STR to O_{n}; LOW-to-OFF	5	-	100	200	ns	note 1
		10	-	40	100	ns	
		15	-	35	70	ns	
$\mathrm{t}_{\text {THL }}$	output transition time O_{S} and OS_{S}; HIGH-to-LOW	5	-	85	170	ns	$35 \mathrm{~ns}+(1.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		10	-	40	80	ns	$19 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		15	-	30	60	ns	$16 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
t ${ }_{\text {tin }}$	output transition time O_{S} and Os^{\prime}; LOW-to-HIGH	5	-	85	170	ns	$35 \mathrm{~ns}+(1.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		10	-	40	80	ns	$19 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
		15	-	30	60	ns	$16 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$
$\mathrm{t}_{\text {PLL }}$	output enable time EO to O_{n}; OFF-to-LOW	5	-	100	200	ns	note 1
		10	-	55	110	ns	
		15	-	50	100	ns	
$\mathrm{t}_{\text {PLZ }}$	output disable time EO to O_{n}; LOW-to-OFF	5	-	80	160	ns	note 1
		10	-	40	80	ns	
		15	-	30	60	ns	
$t_{\text {WCPL }}$	minimum clock pulse width LOW	5	60	30	-	ns	
		10	30	15	-	ns	
		15	24	12	-	ns	
twSTRH	minimum strobe pulse width HIGH	5	80	40	-	ns	
		10	60	30	-	ns	
		15	24	12	-	ns	
$\mathrm{t}_{\text {su }}$	set-up time D to CP	5	60	30	-	ns	
		10	20	10	-	ns	
		15	15	5	-	ns	
$t_{\text {h }}$	hold time D to CP	+5	+5	-15	-	ns	
		10	20	5	-	ns	
		15	20	5	-	ns	
$\mathrm{f}_{\mathrm{clk}(\text { max })}$	maximum clock frequency	5	5	10	-	MHz	
		10	11	22	-	MHz	
		15	14	28	-	MHz	

Note

1. Definition of symbol equivalent to 3-state outputs.

Fig. 5 Timing diagram.
8

Fig. 6 Application example: serial-to-parallel converting LED drivers.

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}	$\mathbf{Z}^{(\mathbf{1})}$ $\mathbf{m a x}$.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38-1	050G09	MO-001AE		\square -	$\begin{aligned} & 92-10-02 \\ & 95-01-19 \end{aligned}$

SOLDERING

Introduction

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Through-hole mount packages

Soldering by dipping or by solder wave
The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joints for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg(max) }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

Surface mount packages

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

MANUAL SOLDERING

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Suitability of IC packages for wave, reflow and dipping soldering methods

| MOUNTING | PACKAGE | SOLDERING METHOD | |
| :--- | :--- | :--- | :--- | :--- |
| | | WAVE | REFLOW |

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

8-stage shift-and-store register LED driver

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

NOTES

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 026752 2531, Fax. +39 0267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2886, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 1162 5344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

