

DESCRIPTION

The A4054A is a complete constant-current / constant-voltage linear charger for single cell lithium-lon batteries. Low external components make the A4054A ideally suited for portable applications. Furthermore, the A4054A is specifically designed to work within USB power specifications.

No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature.

The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The A4054A automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

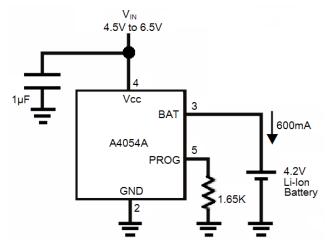
When the input supply (wall adapter or USB supply) is removed, the A4054A automatically enters a low current state, dropping the battery drain current to less than 2μ A. The A4054A can be put into shutdown mode, reducing the supply current to 25μ A.

Other features include charge current monitor, under-voltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage.

The A4054A is available in SOT-25 Package

ORDERING INFORMATION

Package Type	Part Number				
SOT-25	E5	A4054AE5R			
		A4054AE5VR			
Note	R: Tape & Reel				
	V: Green package				
AiT provides all Pb free products					
Suffix " V " means Green Package					


FEATURES

- Programmable Charge Current Up to 800mA
- No MOSFET, Sense Resistor or Blocking Diode Required
- Complete Linear Charger in for single Cell Lithium-Ion Batteries
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge
- Rate Without Risk of Overheating
- Charges Single Cell Li-Ion Batteries Directly from USB Port
- Preset 4.2V Charge Voltage with 1% Accuracy
- Charge Current Monitor Output for Gas Gauging
- Automatic Recharge
- Charge Status Output Pin
- C/10 Charge Termination
- 25µA Supply Current in Shutdown
- 2.9V Trickle Charge Threshold
- Soft-Start Limits Inrush Current
- Available in SOT-25 Packagev

APPLICATION

- Cellular Telephones, PDAs, MP3 Players
- Charging Docks and Cradles
- Bluetooth Applications

Typical Application

PIN DESCRIPTION

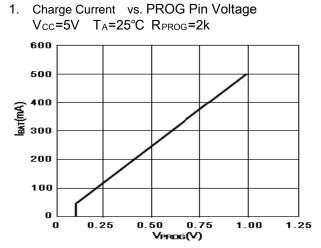
PROG VCC 5 4 A4054A SOT-25 1 2 3 CHRG GND BAT Top View							
Pin #	Symbol	Function					
1	CHRG	Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is pulled low by an internal N-channel MOSFET. When the charge cycle is completed, a weak pull-down of approximately 20µA is connected to the CHRG pin, indicating an "AC present" condition. When the A4054A detects an undervoltage lockout condition, CHRG is forced high impedance.					
2	GND	Ground.					
3	BAT	Charge Current Output. Provides charge current to the battery and regulates the final float voltage to 4.2V. An internal precision resistor divider from this pin sets the float voltage which is disconnected in shutdown mode.					
4	V _{cc}	Positive Input Supply Voltage. Provides power to the charger. VCC can range from 4.25V to 6.5V and should be bypassed with at least a 1 μ F capacitor. When VCC drops to within 30mV of the BAT pin voltage, the A4054A enters shutdown mode, dropping IBAT to less than 2 μ A.					
5	PROG	Charge Current Program, Charge Current Monitor and Shutdown Pin. The charge current is programmed by connecting a 1% resistor, RPROG, to ground. When charging in constant-current mode, this pin servos to 1V. In all modes, the voltage on this pin can be used to measure the charge current using the following formula: IBAT = (VPROG/RPROG) •1000 The PROG pin can also be used to shut down the charger. Disconnecting the program resistor from ground allows a 3µA current to pull the PROG pin high. When it reaches the 1.21V shutdown threshold voltage, the charger enters shutdown mode, charging stops and the input supply current drops to 25µA. This pin is also clamped to approximately 2.4V. Driving this pin to voltages beyond the clamp voltage will draw currents as high as 1.5mA. Reconnecting RPROG to ground will return the charger to normal operation.					

ABSOLUTE MAXIMUM RATINGS

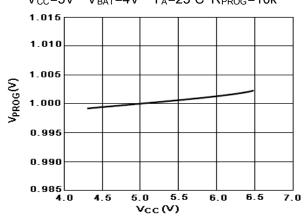
Input Supply Voltage, Vcc	V _{SS} -0.3 ~ V _{SS} +10V
PROG pin Voltage, VPROG	V _{SS-} 0.3 ~ V _{CC} +0.3V
BAT pin Voltage, V _{BAT}	V _{SS} -0.3 ~ 7V
CHAG pin Voltage, V _{CHRG}	V _{SS} -0.3 ~ V _{SS} +10V
BAT pin Current, IBAT	800mA
PROG pin Current, IPROG	800uA
Operating Ambient Temperature, TOPA	-40 ~ +85°C
Storage Temperature, T _{STR}	-65 ~ +125°C

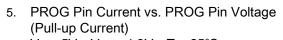
Note: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must

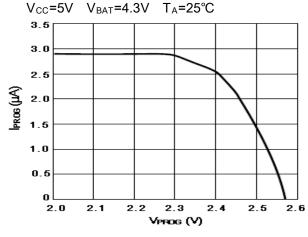
therefore not be exceeded under any conditions.

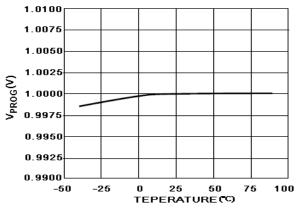


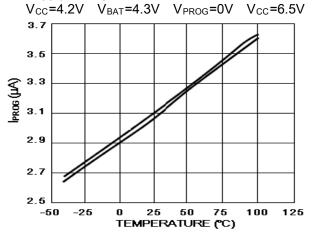
ELECTRICAL CHARACTERISTICS

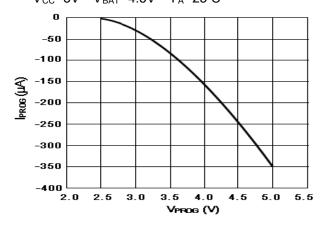

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input supply voltage	Vcc		4.25		6.5	V
Input supply current	ICc	Charge mode, RPROG=10K		300	2000	μA
		Standby mode		200	500	μA
		Shutdown mode(R _{PROG} not connected,Vcc <v<sub>BAT or Vcc<v<sub>UV)</v<sub></v<sub>		25	50	μA
Regulated Output Voltage	Vfloat	0°C≦T _A ≦°C, I _{BAT} = 40mA	4.158	4.2	4.34 2	V
	Іват	RPROG=10k,Current mode	93	100	107	mA
		R _{PROG} =2k,Current mode	465	500	535	mA
BAT pin Current		Standby mode, VBAT=4.2V	0	-2.5	-6	μA
		Shutdown mode		□±1	±2	μA
		Sleep mode,Vcc=0V		±1	±2	μA
Trickle charge current	I _{TRIKL}	V _{BAT} <v<sub>TRIKL,Rp_{ROG}=2k</v<sub>	20	45	70	mA
Trickle charge Threshold Voltage	Vtrikl	RPROG=10K , VBAT Rising	2.8	2.9	3.0	V
Trickle voltage hysteresis voltage	VTRHYS	R _{PORG} =10k	60	80	110	mV
Vcc Undervoltage lockout Threshold	Vuv	From Vcc low to high	3.7	3.8	3.93	V
Vcc undervoltage lockout hysteresis	VUVHYS		150	200	300	mV
Manual shutdown threshold voltage	V _{MSD}	PROG pin rising	1.15	1.21	1.30	V
		PROG pin falling	0.9	1.0	1.1	V
Vcc-Vbat Lockout Threshold		Vcc from low to high	70	100	140	mV
voltage	VASD	Vcc from high to low	5	30	50	mV
C/10 Termination Current Threshold	lterm	R _{PROG} =10k	0.085	0.10	0.11 5	mA/mA
		R _{PROG} =2k	0.085	0.10	0.11 5	mA/mA
PROG pin Voltage	Vprog	RPROG=10k, Current mode	0.93	1.0	1.07	V
CHRG pin weak pull-down Current	Ichrg	V _{CHRG} =5V	8	20	35	μA
CHRG pin Output low voltage	VCHRG	I _{CHRG} =5mA		0.35	0.6	V
Recharge Battery threshold Voltage	ΔV_{RECG}	Vfloat - Vrechrg		100	200	mV



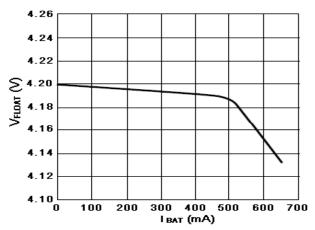

TYPICAL PERFORMANCE CHARACTERISTICS


 PROG Pin Voltage vs. Supply Voltage (Constant Current Mode) V_{CC}=5V V_{BAT}=4V T_A=25°C R_{PROG}=10k

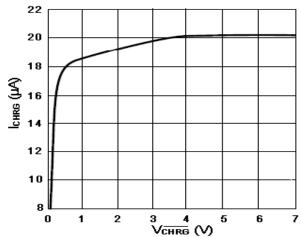


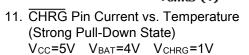

2. PROG Pin Voltage vs. Temperature V_{CC}=5V V_{BAT}=4V R_{PROG}=10k

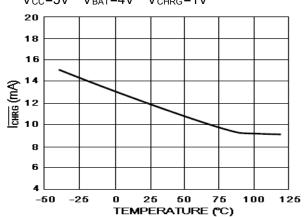
4. PROG Pin Pull-Up Current vs. Temperature and Supply Voltage

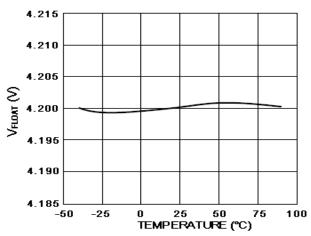


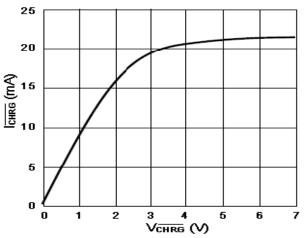
 PROG Pin Current vs. PROG Pin Voltage (Clamp Current) V_{CC}=5V V_{BAT}=4.3V T_A=25°C

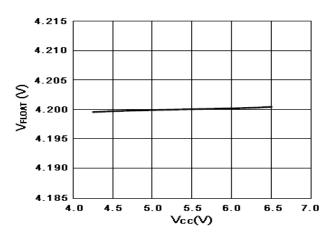




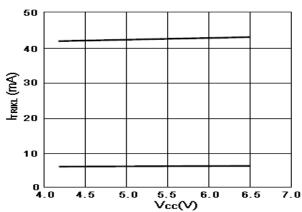

7. Regulated Output (Float) Voltage vs. Charge Current $V_{CC}\text{=}5V$ $T_{A}\text{=}25^{\circ}\text{C}$ $R_{PROG}\text{=}1.25V$


9. CHRG Pin I-V Curve (Weak Pull-Down State) V_{CC}=5V V_{BAT}=4.3V T_A=25°C

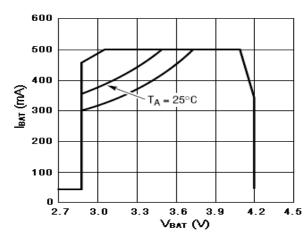


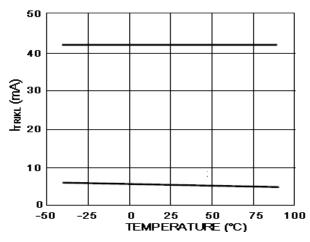

8. Regulated Output(Float) Voltage vs. Temperature V_{CC} =5V R_{PROG}=10k

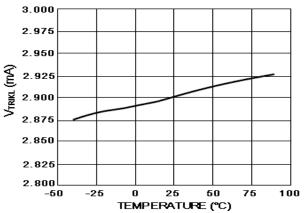
10. CHRG Pin I-V Curve (Strong Pull-Down State) V_{CC} =5V V_{BAT}=4V T_A=25°C

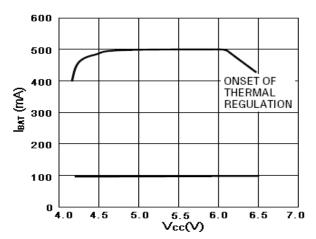


12. Regulated Output(Float) Voltage vs. Supply Voltage $T_A=25^{\circ}C$ R_{PROG}=10V

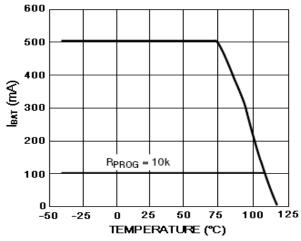



- 13. CHRG Pin Current vs. Temperature (Weak Pull-Down State) V_{CC}=5V V_{BAT}=4.3V V_{CHRG}=5V 28 25 23 ICHRG (JLA) 19 16 13 10 -25 25 50 75 100 -50 n TEMPERATURE (°C)
- 15. Trickle Charge Current vs. Supply Voltage VBAT=2.5V TA=25°C Rprog=10k Rprog=2k

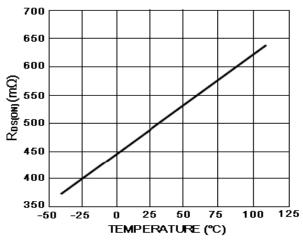

17. Charge Current vs. Battery Voltage V_{CC}=5V θ_{JA}=125°C/W R_{PROG}=2k T_A=0°C T_A=40°C T_A=25°C

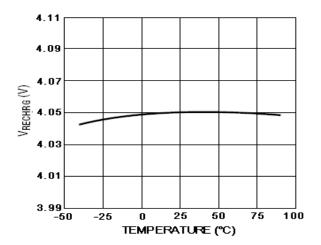

14. Trickle Charge Current vs. Temperature V_{CC}=5V V_{BAT}=2.5V R_{PROG}=2k R_{PROG}=10k

16. Trickle Charge Threshold vs. Temperature V_{CC}=5V R_{PROG}=10k

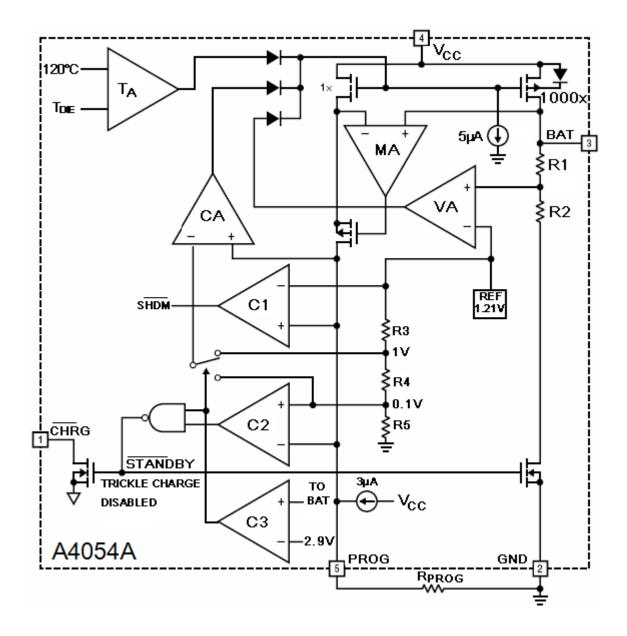


 Charge Current vs. Supply Voltage V_{BAT}=5V θ_{JA}=80°C/W T_A=25°C R_{PROG}=2k R_{PROG}=10k

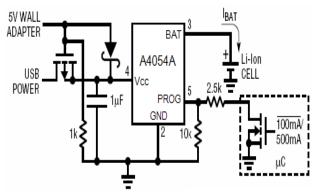


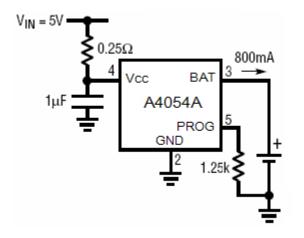

19. Charge Current vs. Ambient Temperature V_{CC}=5V V_{BAT}=4V θ_{JA}=80°C/W R_{PROG}=2k R_{PROG}=10k

21. Power FET "NO" Resistance vs. Temperature V_{CC}=4.2V I_{BAT}=100mA R_{PROG}=2k

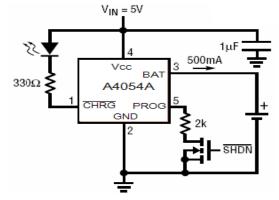


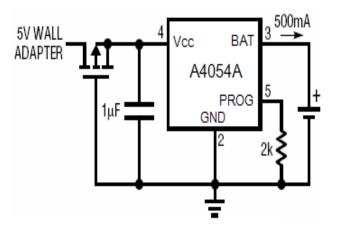
20. Recharge Voltage Threshold vs. Temperature V_{CC} =5V R_{PORG}=10k


BLOCK DIAGRAM

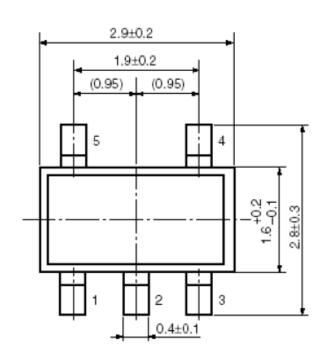


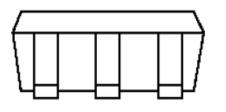
Typical Circuit

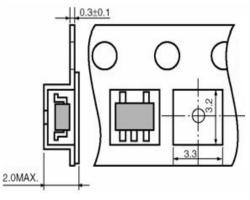

1. USB/Wall Adapter Power Li-Ion Charger

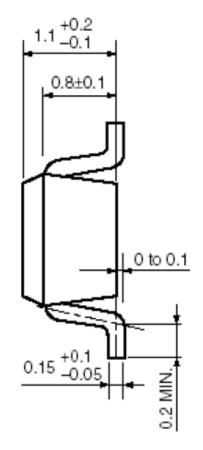

3. 800mA Li-Ion Charger with External Power Dissipation

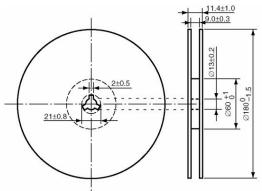
2. Full Featured Single Cell Li-Ion Charger


4. Basic Li-Ion Charger with Reverse Polarity Input Protection




PACKAGE INFORMATION


Dimension in SOT-25 Package (Unit: mm)



Tape Dimension

Reel Dimension

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.