■ FEATURES

- Output voltage: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output version
- Adjustable version output voltage range:1.23V to $18 \mathrm{~V} \pm 4 \%$
- $150 \mathrm{KHz} \pm 15 \%$ fixed switching frequency
- Voltage mode non-synchronous PWM control
- Thermal-shutdown and current-limit protection
- ON/OFF shutdown control input
- Operating voltage can be up to 22 V
- Output load current: 3A
- Low power standby mode
- Built-in switching transistor on chip
- TO252-5L packages

■ APPLICATIONS

- Simple High-efficiency step-down regulator
- On-card switching regulators
- Positive to negative converter

GENERAL DESCRIPTION

The FSP3124 series are monolithic IC that design for a step-down DC/DC converter, and own the ability of driving a 3A load without additional transistor component. Due to reducing the number of external component, the board space can be saved easily. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control have good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurred and $V_{F B}$ is down to 0.5 V below, the switching frequency will be reduced. The FSP3124 series operates at a switching frequency of 150 KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. The output version included fixed 3.3 V , $5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable type. The package is available in a standard 5-lead TO-252 package.

Symbol	Name	Descriptions
1	Vin	Operating Voltage Input
2	Output	Switching Output
3	Gnd	Ground
4	FB	Output Voltage Feedback Control
5	SD	ON/OFF Shutdown

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramrter	Rating	Unit
V_{CC}	Supply Voltage	+24	V
$\mathrm{~V}_{\mathrm{SD}}$	ON/OFF Pin input Voltage	-0.3 to +18	V
$\mathrm{~V}_{\mathrm{FB}}$	Feedback Pin Voltage	-0.3 to +18	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage to Ground	-1	V
P_{D}	Power Dissipation	Internally Limited	W
T_{ST}	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
V_{OP}	Operating Voltage	+4.5 to +22	V

ELECTRICAL CHARACTERISTICS (ALL OUTPUT VOLTAGE VERSIONS)

Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ for $3.3 \mathrm{~V}, 5 \mathrm{~V}$, adjustable version and $\mathrm{V}_{\mathbb{I N}}=18 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$

Symbol I_{B}	ParamrterFeedback bias current		Conditions $\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$ (Adjustable version only)		Min.	$\begin{gathered} \text { Typ. } \\ \hline-10 \end{gathered}$	$\begin{gathered} \hline \text { Max. } \\ \hline-50 \\ \hline-100 \\ \hline \end{gathered}$	UnitnA		
Fosc	Oscillator frequency				127	150	173	KHz		
					110		173			
$\mathrm{F}_{\text {CSP }}$	Short Circuit Oscillator Frequency		$\begin{gathered} \text { When Current Limit } \\ \text { Occur and } \\ \mathrm{V}_{\mathrm{FB}}<0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		10	30	50	kHz		
$\mathrm{V}_{\text {SAT }}$	Saturation voltage		$\mathrm{I}_{\mathrm{OUT}}=3 \mathrm{~A}$ no outside circuit $V_{F B}=0 \mathrm{~V}$ force driver on				1.4			
					1.5	V				
DC	Max.Duty	cle(ON)			$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ for	driver on			100	\%
	Min.Duty	cle(OFF)	$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ fo	e driver off	0					
I_{CL}	Current limit		Peak current no outside circuit $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ force driver on		3.6		6.9	A		
			3.4		7.5					
I_{L}	Output=0	Output leakage			no outside circuit $\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ force driver off				-50	$\mu \mathrm{A}$
	Output=-1	current	$\mathrm{V}_{\text {IN }}=22 \mathrm{~V}$				-30	mA		
I_{Q}	Quiescent Current		$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ force driver off			5	10	mA		
$\mathrm{I}_{\text {StBy }}$	Standby Quiesient Current		$\begin{aligned} & \text { ON/OFF Pin=5V } \\ & \mathrm{V}_{\text {IN }}=22 \mathrm{~V} \end{aligned}$			70	200	$\mu \mathrm{A}$		
				70	250					
VIL	ON/OFF pin logic input threshold voltage				Low(regultaor ON)			1.3	0.6	V
$\mathrm{V}_{\text {IH }}$			High(regultaor OFF)		2.0					
I_{H}	ON/OFF p current	logic input	$\mathrm{V}_{\text {LOGIC }}=2$	5V(OFF)			-15	$\mu \mathrm{A}$		
I_{L}	ON/OFF current	input	$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}(\mathrm{ON})$				-5			
$\theta_{\text {Jc }}$	Thermal R	istence	TO252-5L	Junction to case		10		${ }^{\circ} \mathrm{C} / \mathrm{W}$		
$\theta_{\text {JA }}$	Thermal with Copp Approxim	istence Area of y $3{ }^{2}$	TO252-5L	Junction to ambient		50		${ }^{\circ} \mathrm{C} / \mathrm{W}$		

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{TJ}=25^{\circ} \mathrm{C}$.

- ELECTRICAL CHARACTERISTICS (CONTINUED)

	Symbol	Parameter	Conditions	Typ.	Limit	Unit
FSP3124-ADJ	$V_{\text {FB }}$	Output Feedback	$\begin{gathered} 5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \\ \mathrm{~V}_{\text {OUT }} \text { programmed for } \\ 3 \mathrm{~V} \end{gathered}$	1.23	$\begin{aligned} & 1.193 / 1.18 \\ & 1.267 / 1.28 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \quad \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%
FSP3124-3.3V	$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \quad \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%
FSP3124-5.0V	$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{gathered} 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$	5	$\begin{aligned} & 4.8 / 4.75 \\ & 5.2 / 5.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \\ \hline \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \quad \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	80		\%
FSP3124-12V	$V_{\text {OUT }}$	Output voltage	$\begin{gathered} 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$	12	$\begin{aligned} & 11.52 / 11.4 \\ & 12.48 / 12.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=16 \mathrm{~V}$, $\quad \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	90		\%

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{TJ}=25^{\circ} \mathrm{C}$.

■ BLOCK DIAGRAM

- FUNCTION DESCRIPTION

Pin Function

$\mathrm{V}_{\text {IN }}$
This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{SAT}}\right)$ and approximately -0.5 V , with a duty cycle of approximately $\mathrm{V}_{\text {out }}$ / $\mathrm{V}_{\text {IN }}$. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.

Feedback

Senses the regulated output voltage to complete the feedback loop.

ON/OFF

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150 uA . Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 18 V) shuts the regulator down. If this shutdown feature is not needed, the ON/OFF pin can be wired to the ground pin.

Thermal Considerations

The TO-252 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least $0.4 \mathrm{in}^{2}$, and ideally should have 2 or more square inches of 2 oz . Additional copper area improves the thermal characteristics, but with copper areas greater than approximately $6 \mathrm{in}^{2}$, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PC board with large copper areas and/or airflow are recommended.
The FSP3124 (TO-252 package) junction temperature rise above ambient temperature with a 3A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.
For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.
Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multilayer board and the amount of solder on the board. The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

■ TYPICAL APPLICATION CIRCUITS
(1) Fixed Output Circuit

(2) Adjustable Output Circuit

- TYPICAL PERFORMANCE CHARACTERISTICS

FSP3124 Efficiency v.s. Temperature (Vin=12V,Vout=5V,Io=3A)

FSP3124Saturation Voltage v.s. Temperature (Vcc=12V,Vfb=0V,VSD=0)

FSP3124Efficiency v.s. Temperature (Vin=12V,Vout=3.3V,lo=3A)

FSP3124Switch Current Limit v.s. Temperature (Vcc=12V,Vfb=0V)

FSP3124 Supply Current v.s. Temperature (Vcc=12V , No Load ,Von/off $=0 \mathrm{~V}$ (Switch ON) ,Von/off $=5 \mathrm{~V}$ (Switch OFF))

- TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

FSP3124Threshold Voltage v.s. Temperature ($\mathrm{Vcc}=12 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}$)

FSP3124 Frequency v.s. Temperature (Vcc=12V , lo $=500 \mathrm{~mA}$,Vout=5V)

FSP3124Output Voltage v.s. Temperature (Vin=12V ,lo=3A)
 (V)

FSP3124 ON/OFF Current v.s. ON/OFF Voltage
(Vin=12V)

FSP3124 Feedback Current v.s. Temperature (Vcc=12V , Vout=5V,Vfb=1.3V)

■ ORDERING INFORMATION

MARKING INFORMATION

■ PACKAGE INFORMATION

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	2.200	2.400	0.087	0.094
A1	0.000	0.150	0.000	0.006
b	0.400	0.630	0.016	0.025
c	0.450	0.580	0.018	0.023
c1	0.450	0.580	0.018	0.023
D	6.350	6.850	0.250	0.270
D1	5.200	5.500	0.205	0.217
E	5.400	6.200	0.213	0.244
e	1.270TYP.		0.050TYP.	
e1	2.540TYP.		1.000TYP.	
L1	9.000	11.300	0.360	0.452
L2	0.900	1.630	0.035	0.064
L3	2.200	2.800	0.087	0.110
V	3.800REF		0.150REF	

