

700mA High Voltage Adjustable Current Regulator With Enable Control

DESCRIPTION **FEATURES** ■ 0.5V Output Drop-out Voltage at 700mA. The AMC7140 is a high voltage, low dropout **700mA Maximum Output Current.** current regulator of maximum output current up to 700mA. The output current is decided by an external **Output Current Controlled by External Resistor.** resistor, and the output sink current could be disabled via **3us Fast Response Output Stage Enable Control.** OE pin. **Output Sustaining Voltage Up To 75V.** Build-in thermal protection to prevent the chip over Wide Supply Voltage Range: 5V~50V. heat damage. ■ TO-252-5L package. TYPICAL APPLICATION CIRCUIT **APPLICATIONS** High Power LED Driver RGB Full Color Power LED driver LCD Monitor/TV LED backlight Driver 5V~50V O ■ LED Table Lamp Свр PACKAGE PIN OUT VDD OE Enable AMC7140 5 ISET OUT GND R_{SET} 3 2 ISET 1 TO-252-5L (Top View)

ORDER INFORMATION						
DL	TO-252					
DL	5 pin					
	AMC7140DLGT					
	AMC7140DLGT-A					
Note: Part Nu	mber: A M C 7 1 4 0 🛄 🔲 🖵 🖵 🖵					
Package Typ Package Pro		T: Tape & Reel; N/A: Bulk				

1

ABSOLUTE MAXIMUM RATINGS (Not	e)
Input Voltage, V _{DD}	55V
Output Sustaining Voltage, V _{OUT}	75V
Output Sink Current, I _{OUT}	700mA
Output Enable Voltage, V _{OE}	13.2V
Maximum Operating Junction Temperature, T _J	150°C
Storage Temperature Range	-55°C to 150°C
Lead Temperature (soldering, 10 seconds)	260°C
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to G Currents are positive into, negative out of the specified terminal.	round.

PIN DESCRIPTION				
Pin Name	Pin Function			
OUT	Output pin. Sink current is decided by the current on R _{SET} connected to I _{SET} pin. $I_{OUT} = 500 \times I_{SET} = 500 \times \frac{1.2V}{R_{SET}}$			
OE	Output Stage Enable Control pin. High enables the OUT pin. It can be left floating for normally on.			
I _{SET}	Output Current Setting pin. Connect a resistor from I_{SET} to GND to set the LED bias current. $I_{SET} = \frac{1.2V}{R_{SET}}$			
VDD	Power Supply pin.			
GND	Ground pin.			

THERMAL DATA

Thermal Resistance from Junction to Ambient, θ_{JA}	80°C /W
Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. Connect the ground pin to ground using a large pad or ground plane for better heat dissipation. All of the above assume no ambient airflow.	

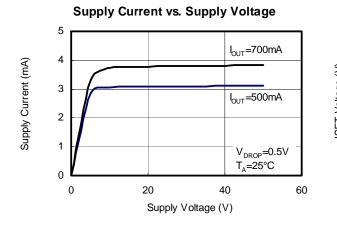
Maximum Power Calculation:

$P_{D(MAX)} = \underline{T_{J(M)}}$	$\frac{A_{AX} - T_{A(MAX)}}{\theta_{JA}}$
$T_J(^{o}C)$:	Maximum recommended junction temperature
$T_A(^{o}C)$:	Ambient temperature of the application
$\theta_{JA}(^{o}C /W)$:	Junction-to-Ambient temperature thermal resistance of the package, and other heat dissipating materials.

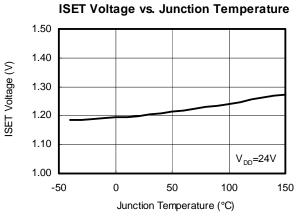
The maximum power dissipation for a single-output regulator is:

 $P_{D(MAX)} = [(V_{IN(MAX)} - V_{OUT(NOM)})] \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_Q$

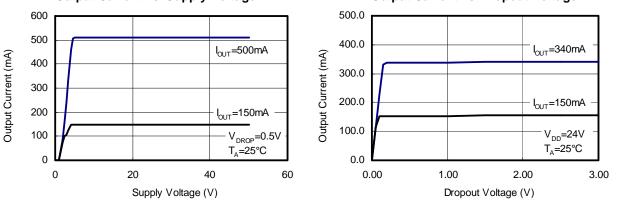
 $\begin{array}{rcl} \text{Where:} & V_{\text{OUT(NOM)}} = \text{the nominal output voltage} \\ & I_{\text{OUT(NOM)}} = \text{the nominal output voltage} \\ & I_{\text{OUT(NOM)}} = \text{the nominal output current, and} \\ & I_{\text{Q}} = \text{the quiescent current the regulator consumes at } I_{\text{OUT(MAX)}} \\ & V_{\text{IN(MAX)}} = \text{the maximum input voltage} \\ & \text{Then} & \theta_{\text{IA}} = (+150 \,^{\text{o}}\text{C} - \text{T}_{\text{A}})/\text{P}_{\text{D}} \end{array}$


RECOMMENDED OPERATING CONDITIONS						
Parameter		Symbol	Min	Тур	Max	Unit
Supply Voltage		V _{DD}	5		50	V
Output Enable Voltage		V _{OE}			12	V
Output Sink Current	AMC7140	I _{OUT}	200		355	
	AMC7140A		350		600	mA
Operating free-air temperature range		T _A	-40		+85	°C

DC ELECTRICAL CHARACTERISTICS


Parameter	Condition		Min	Тур	Max	Unit	
	$V_{OUT}=0.5V, R_{SET}=3K\Omega$			200			
Output Current	$V_{OUT}=0.5V, R_{SET}=1.71K\Omega$			350		mA	
	$V_{OUT}=0.5V, R_{SET}=1K\Omega$			600			
Outrast Current Deviation	AMC7140	V _{OUT} =0.5V, I _{OUT} =200mA~350mA			±5	0/	
Output Current Deviation	AMC7140A	V _{OUT} =0.5V, I _{OUT} =350mA~600mA			±5	%	
SET Current Range			200		1400	μA	
Minimum Output Current	I _{SET} =200uA			100		mA	
Maximum Output Current	I _{SET} =1400uA			700		mA	
Output Dropout Voltage	I _{SET} =1000uA, Note 1			0.35		V	
Load Regulation	V _{OUT} =0.5V to 3V				3	mA/V	
Line Regulation	V_{OUT} =0.5V, I_{OUT} =350mA, V_{DD} = 5V to 50V			0.08	0.15	%/V	
Thermal Shutdown Junction Temperature	Hysteresis = 20°C			160		°C	
"Low" Input Voltage			0		0.8	V	
"High" Input Voltage	Should lower than V _{DD} .		2		$Min\{V_{DD}, 12\}$	V	
"Low" Input Current			-20		+20	μΑ	
"High" Input Current			-5.0		+5.0	μΑ	
Output Enable Delay Time	OE from Low to High, V_{OUT} =0.5V, I_{OUT} =350mA, 50%			3		μS	
Output Disable Delay Time	OE from High to Low, $V_{OUT} = 0.5V$, $I_{OUT} = 350$ mA, 50%			3		μS	
Supply Current Consumption					5	mA	

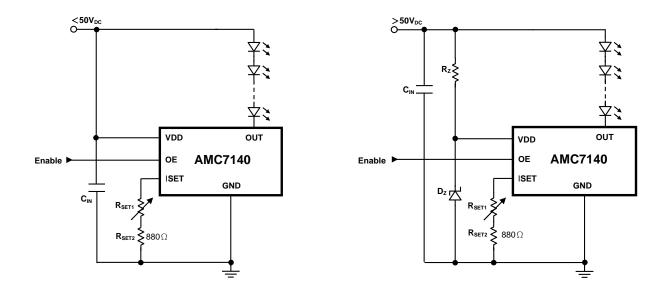
Note1: Output dropout voltage: 90% x I_{OUT} @ V_{OUT} =500mV



CHARACTERIZATION CURVES

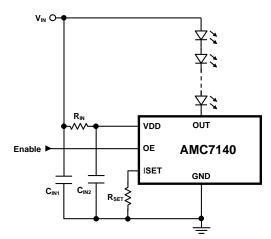
Output Current vs. Supply Voltage

Output Current vs. Dropout Voltage

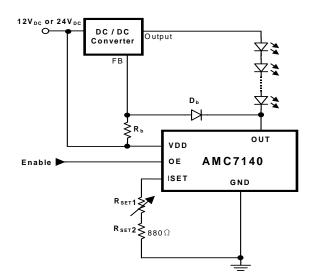

APPLICATION INFORMATION

AMC7140 is a high voltage, low dropout current regulator for maximum output current up to 700mA with OE pin control. The current could be linearly adjusted through variable resister connected to I_{SET} pin, or by PWM control via OE pin. Although the absolute maximum rating of OUT pin 75V, the dropout voltage between OUT pin and GND pin should not be too large when current is sinking because of the thermal dissipation capability of the package.

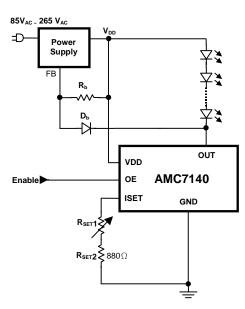
Here are some of the typical application examples:


DC Voltage Input:

Any DC voltage level between 5V to 50V could be adopted as power source V_{DD} for typical application of AMC7140 as long as V_{DD} is larger than the total forward voltage drop of the LED string (at expecting current) by 0.35V. If 50V ~ 75V voltage level is adopted as power source to positive end of the LED string, one Zener shunt regulator could be used to provide appropriate voltage to VDD pin.


If ceramic capacitor is selected as input capacitor, C_{IN} , without any electrolytic capacitor connected in parallel, sometimes there may be high voltage spike on input voltage line when V_{IN} is switching on or off in testing stage or mass production stage. The peak of the voltage spike may be higher than 50V (supply voltage range of VDD pin) even when the normal V_{IN} level is much less than 50V. An RC filter, $R_{IN} \& C_{IN2}$, is recommended at VDD pin in order to prevent the voltage spike from damaging the VDD pin, as shown in the following circuit diagram.

LED Backlight Solution:


AMC7140 could coordinate with any type of DC-to-DC converter through feedback path to realized LED backlight module. The number of LEDs in the string is variable even with certain fixed power source since the output voltage of the DC-to-DC converter could be modulated according to feedback signal.

AC Voltage Input:

AMC7140 could work with any kind of well-known or well-developed switch-mode power supply system. Simply cut off the internal feedback path of the power supply system and then feed the signal from AMC7140 back to the power supply system instead.

THERMAL CONSIDERATION

The Maximum Power Dissipation on Current Regulator:

 $P_{D(MAX)} = V_{OUT(MAX)} \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_{DD}$

 $V_{OUT(MAX)}$ = the maximum voltage on output pin;

 $I_{OUT(NOM)}$ = the nominal output current;

 I_{DD} = the quiescent current the regulator consumes at $I_{OUT(NOM)}$;

 $V_{IN(MAX)}$ = the maximum input voltage.

Thermal Consideration:

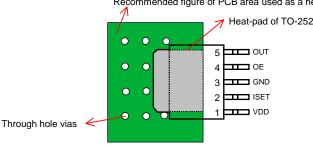
The AMC7140 has internal power and thermal limiting circuitry designed to protect the device under overload conditions. However, maximum junction temperature ratings should not be exceeded under continuous normal load conditions. The thermal protection circuit of AMC7140 prevents the device from damage due to excessive power dissipation. When the device junction temperature rises to approximately 150°C, the regulator will be turned off. When power consumption is over about 1000mW (TO-252 package, at $T_A=70$ °C), additional heat sink is required to control the junction temperature below 125°C.

The junction temperature is:

 $T_{J} = P_{D} \left(\theta_{JT} + \theta_{CS} + \theta_{SA} \right) + T_{A}$

 P_D : Dissipated power.

 $\theta_{\text{ JT}}$: Thermal resistance from the junction to the mounting tab of the package.

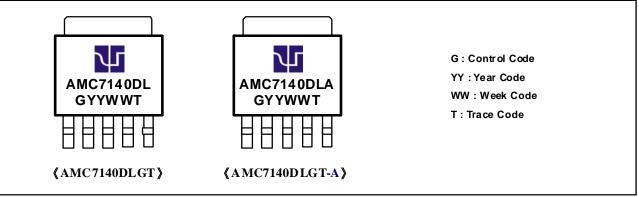

For TO-252 package, $\theta_{JT} = 7.0 \text{ °C/W}$.

 θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} < 1.0^{\circ}$ C/W)

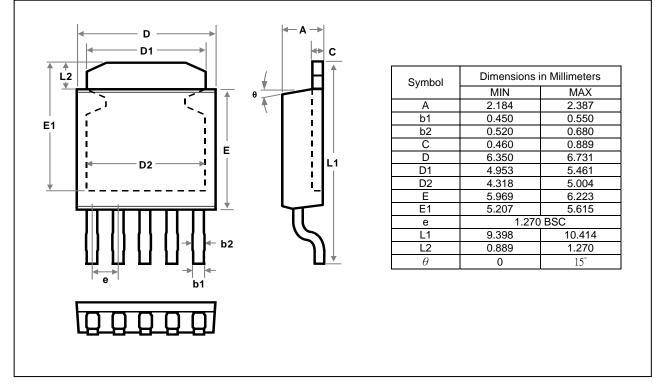
 θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through-hole vias.

PCB θ sa (°C/W)	59	45	38	33	27	24	21
PCB heat sink size (mm^2)	500	1000	1500	2000	3000	4000	5000



Recommended figure of PCB area used as a heat sink.



PACKAGE

Top Marking For TO-252 5-Pin

TO-252-5L

