BM0150

1.5A Power LED Driver

DESCRIPTION

FEATURES

BM0150 is a PWM power LED driver IC. The driving current from few milliamps up to 1.5 A . It allows high brightness power LED operating at high efficiency from 3.6 Vdc to 40 Vdc . Up to 200 KHz external controlled operation frequency. External resistor controlled the maximum output current to single LED or a LED string.

- Only 5 external components required.
- Output driving current up to 1.5A.
- $3.6 \mathrm{~V} \sim 40 \mathrm{~V}$ wide operation voltage range.
- High efficiency
- ESD protection HBM 3KV
- TO-252 5-pin power package.

APPLICATIONS

DC/DC LED driver

- Automotive
- Lighting

PACKAGE PIN OUT

ORDER INFORMATION

TR	TO-252
	5-pin
	BM0150-T (80pcs/ tube, tube)
	BM0150-R (2500pcs/ reel, tape \& reel)

POWER DISSIPATION TABLE

Package	θ_{JA} $\left({ }^{\circ} \mathrm{C} \mathrm{W}\right)$	Derating factor $\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right)$ $\mathrm{T}_{\mathrm{A}} \geqq 25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}} \leqq 25^{\circ} \mathrm{C}$ Power rating (mW)	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ Power rating (mW)	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Power rating (mW)
T	80	12.5	1560	1000	812
R	80	12.5	1560	1000	812

Note :
Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right)$.
P_{D} : Power Dissipation, T_{A} : Ambient temperature, θ_{JA} : Thermal Resistance-Junction to Ambient The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system. All of the above assume no ambient airflow.

BLOCK DIAGRAM

PIN DESCRIPTION		
Pin Number	Pin Name	Pin Function
1	VCC	Input Voltage $3.6 \mathrm{~V} \sim 40 \mathrm{~V}$
2	CS	Peak current senses pin.
3	GND	Ground
4	OUT	Driver output pin.
5	OSC	Oscillator timing capacitor.

ABSOLUTE MAXIMUM RATINGS
Input Voltage, VCC -0.3 V to 40 V Output Voltage, OUT -0.3 V to 40 V Maximum Junction Temperature , T_{J} $150^{\circ} \mathrm{C}$ Storage Temperature Range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10 seconds) $260^{\circ} \mathrm{C}$

Note:
Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4		37	V
Output current	$\mathrm{I}_{\text {OUT }}$			1.5	A
Operating free-air temperature range	Ta	-40		85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

VCC $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$. (Unless otherwise noted)							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Apply Pin
Supply Current	I_{CC}	VCC=3.6~40V			5	mA	VCC
Output Drop-out Voltage	V_{DP}	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~V}_{\text {CS }}-\mathrm{V}_{\text {OUT }}$		1	1.31	V	OUT
Output Off Current	$\mathrm{I}_{\text {OFF }}$	$\mathrm{V}_{\text {CS }}-\mathrm{V}_{\text {OUT }}=40 \mathrm{~V}$		200	300	$\mu \mathrm{A}$	
Current Sense Voltage	$\mathrm{V}_{\text {CS }}$	VCC- $\mathrm{V}_{\text {CS }}$	260	300	340	mV	CS
Maximum duty cycle	T_{DC}	$\mathrm{V}_{\mathrm{CS}}=\mathrm{VCC}$		85		\%	OSC
OSC Charge Current	I_{CH}			35		uA	

APPLICATION INFORMATION

Low Voltage DC/DC Application

The BM0150 was designed for power LED driving application. Only 5 external components were required for low voltage application. Fig. 1 shows the typical application circuit for input voltage range from 3.6 V to 40 V . Buck power conversion topology was used and total forward voltage (at expecting current) of the LED string should lower than supply voltage by 1.6 V at least.

Input Bypass Capacitor

The input by-pass capacitor C_{IN} holds the input voltage and filters out the switching noise of BM0150.

Flywheel Diode

The fast recovery diode was recommended for flywheel diode D_{F}. This is because the high reverse recovery current will cause the voltage drop across Rsense being higher than 330 mV , and consequently the switch will be turned off which has just been turned on.

LED Driving Current

The peak current I_{PK} flow though LEDs was decided by:

$$
I_{P K}=\frac{300 \mathrm{mV}}{\text { Rsense }}
$$

The average current on LEDs was determined by the peak-to-peak ripple current that was decided by inductor L . Assume the target average current 550mA on LEDs and ripple current 100mA then the Rsense should be:

$$
\text { Rsense }=\frac{300 \mathrm{mV}}{550 \mathrm{~mA}+0.5 \cdot 100 \mathrm{~mA}}=0.50 \Omega
$$

The Rsense value should higher than $200 \mathrm{~m} \Omega$ so that driving current won't over the recommended maximum driving current 1.5 A . Usually ,the power consumption on this resistor is around $0.2 \mathrm{~W} \sim 1 \mathrm{~W}$, depend on the current.

Inductor

The Inductor L stores energy during switch turn-on period and discharge driving current to LEDs via flywheel diode while switch turn-off. In order to reduce the current ripple on LEDs, the L value should high enough to keep the system working at continuous-conduction mode that inductor current won't fall to zero.

Since in steady-state operation the waveform must repeat from one time period to the next, the integral of the inductor voltage v_{L} over one time period must be zero:

$$
\int_{0}^{T_{s}} v_{L} d t=\int_{0}^{t_{O N}} v_{L} d t+\int_{t_{O N}}^{T_{s}} v_{L} d t=0 \quad \text { Where } \quad T_{s}=t_{O N}+t_{O F F}
$$

Therefore

$$
\frac{t_{O N}}{t_{O F F}}=\frac{V_{L E D}+V_{F}}{V_{C C}-V_{R s e n s e}-V_{S A T}-V_{L E D}}
$$

Where, $V_{L E D}$ is the total forward voltage (at expecting current) of the LED string, V_{F} is the forward voltage of the flywheel diode $\mathrm{D}_{\mathrm{F}}, V_{\text {Rsense }}$ is the peak value of the voltage drop across Rsense which is 300 mV , and $V_{S A T}$ is the saturation voltage of the switch which has a typical value of 1 V .

Since the operation frequency f is determined by choosing appropriate value for timing capacitor C_{T}, the switch turn-on time can also be known by

$$
t_{O N}=D \cdot T_{s}=\frac{D}{f} \quad \text { where } D(\text { Dutycycle })=\frac{t_{O N}}{t_{O N}+t_{O F F}}
$$

With knowledge of the peak switch current and switch on time, the value of inductance can be calculated.

$$
L=\frac{V_{C C}-V_{R \text { Sense }}-V_{S A T}-V_{L E D}}{I_{P K}} \cdot t_{O N}
$$

PACKAGE

5-Pin Surface Mount TO-252 (DL)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.400	0.600	0.016	0.024
c	0.430	0.580	0.017	0.023
c1	0.430	0.580	0.017	0.023
D	6.350	6.650	0.250	0.262
D1	5.200	5.400	0.205	0.213
E	5.400	5.700	0.213	0.224
e	1.270 TYP		0.050 TYP	
e1	2.540 TYP		1.000 TYP	
L1	9.500	9.900	0.374	0.390
L2	1.400	1.780	0.055	0.070
L3	2.550	2.900	0.100	0.114
V	3.800 REF		0.150 REF	

