

Dual P-Channel 30V (D-S) MOSFET

General Description

B4953 is the dual P-Channel logic enhancement mode power field effect transistor using high cell density, DMOS trench technology in production. This high density process is especially tailored to minimize on-state resistance. The device is particularly suitable for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching and low in-line power loss are needed in a very small outline surface mount package.

Features

- **-30V/-6A,** $R_{DS(ON)}$ **=48mΩ@V**_{GS}**=-10V**
- -30V/-5A, $R_{DS(ON)}$ =78mΩ@V_{GS}=-4.5V
- Super High Density Cell Design for Extremely Low R_{DS(ON)}
- Exceptional On-Resistance and Maximum DC Current Capability
- SOP-8 Package

Pin Configuration

Applications

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted):

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V_{DSS}	-30	V
Gate-Source Voltage		V _{GSS}	±20	V
Continuous Drain	TA=25°C		-6	A
Current(tJ=150°C)	TA=70°C	I _D	-5	
Pulsed Drain Current		I _{DM}	-30	Α
Continuous Source Current (Diode Conduction)		Is	-1.7	Α
Maximum Power Dissipation	TA=25°C	P _D	2.0	W
	TA=70°C		1.44	
Operating Junction Temperature		TJ	-55 to 150	$^{\circ}\!\mathbb{C}$
Thermal Resistance-Junction to Case		R0JC	62.5	°C/W