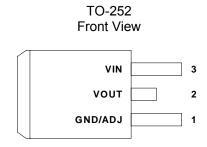
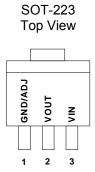


GENERAL DESCRIPTION

The CM1117 series of adjustable and fixed voltage regulators are designed to provide 1A for applications requiring high efficiency. All internal circuitry is designed to operated down to 1V input to output differential and the dropout voltage is fully specified as a function of load current.

The CM1117 offers current limiting and thermal protection. The on chip trimming adjusts the reference voltage accuracy to 1%.


FEATURES


- Three Terminal Adjustable or Fixed Voltages: 1.8V, 2.5V, 3.3V, and adjustable.
- Output Current of 1A
- ◆ Low dropout voltage: 1V Typ.
- ◆ Line Regulation: 0.2% Max
- ◆ Load Regulation: 0.4% Max
- ◆ Fast Transient Response
- ◆ Thermal Protection
- ♦ SOT-223 and TO-252 package available

APPLICATIONS

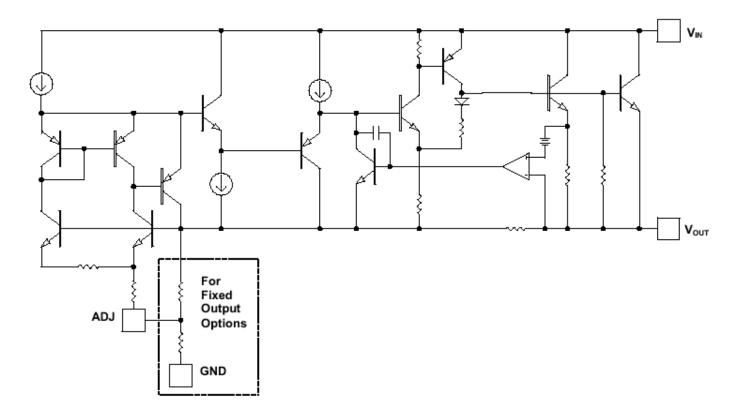
- High Efficiency Linear Regulators
- Post Regulators for Switching Supplies
- Battery Chargers
- Active SCSI Terminators
- ◆ Post Regulator for Switching DC/DC Converter
- Battery Powered Instrumentation

PIN CONFIGURATION

ORDERING INFORMATION

Package Type		Operating Temperature	Output Valtage
TO-252	SOT-223	Range (T _A)	Output Voltage
CM1117DCN252	CM1117DCM223	0℃ ~+125℃	1.8V
CM1117KCN252	CM1117KCM223	0℃ ~+125℃	2.5V
CM1117SCN252	CM1117SCM223	0℃ ~+125℃	3.3V
CM1117CN252	CM1117CM223	0℃ ~+125℃	ADJ.
CM1117GDCN252*	CM1117GDCM223*	0℃ ~+125℃	1.8V
CM1117GKCN252*	CM1117GKCM223*	0℃ ~+125℃	2.5V
CM1117GSCN252*	CM1117GSCM223*	0℃ ~+125℃	3.3V
CM1117GCN252*	CM1117GCM223*	0℃ ~+125℃	ADJ.

^{*}Note: G : Suffix for Pb Free Product


ABSOLUTE MAXIMUM RATINGS

Input Voltage	+18V
Operating Junction Temperature Range, T_{J}	0°℃ to +125°℃
Storage Temperature	65°C to +150°C
Lead Temperature (10 sec.)	260 °C

THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (⊖ _{ic})	SOT-223	15	°C\ W
Thermal Resistance (Ojc)	TO-252	50	
Thermal Resistance (⊖ _{ia})	SOT-223	136	°C\ W
Thermal Resistance (\bigcirc_{ja})	TO-252	80	
Internal Power Dissipation (P_D) ($\Delta T = 100^{\circ}$, No Heatsink)	SOT-223	900	mW
internal rower dissipation (r b) (\(\Delta\) i = 100 \(\Cappa\), No fleatsink)	TO-252	1500	
Maximum Junction Temperature		150	$^{\circ}$
Maximum Lead Temperature (10 Sec)	300	$^{\circ}\mathbb{C}$	

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

Electrical Characteristics at I_{OUT} = 10mA, and T_J = +25°C; unless otherwise noted

Symbol	Parameter	Conditions	Min (Note 2)	Typ (Note 1)	Max (Note 2)	Units
V_{REF}	Reference Voltage	$ \begin{array}{l} \text{CM1117-ADJ} \\ \text{I}_{\text{OUT}} = 10\text{mA}, \text{V}_{\text{IN}} - \text{V}_{\text{OUT}} = 2\text{V}, \text{T}_{\text{J}} = 25^{\circ}\text{C} \\ 10\text{mA} \leqslant \text{I}_{\text{OUT}} \leqslant 1\text{A}, 1.4\text{V} \leqslant \text{V}_{\text{IN}} - \text{V}_{\text{OUT}} \leqslant 10\text{V} \end{array} $	1.238	1.250	1.262	V
V _{OUT}	Output Voltage	CM1117 -1.8 I_{OUT} =10mA, V_{IN} =3.8V, T_{J} =25 °C $0 \le I_{OUT} \le 1$ A, $3.2V \le V_{IN}$ - $V_{OUT} \le 1$ 0V	1.764	1.8	1.836	V
		CM1117 -2.5 I_{OUT} =10mA, V_{IN} =4.5V, T_{J} =25°C $0 \le I_{OUT} \le 1$ A, $3.9V \le V_{IN}$ - $V_{OUT} \le 10$ V	2.45	2.500	2.55	V
		$ \begin{array}{l} \text{CM1117 -3.3} \\ I_{\text{OUT}}\text{=}10\text{mA}, V_{\text{IN}}\text{=}5\text{V}, T_{\text{J}}\text{=}25^{\circ}\!$	3.234	3.300	3.366	V
ΔV_{OUT}	Line Regulation (Note 3)	CM1117 -ADJ I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤13.75V		0.035	0.2	%
		CM1117 -1.8 I _{OUT} =0mA, 3.2V≤V _{IN} ≤10V		1	6	mV
		CM1117 -2.5 I _{OUT} =0mA, 3.9V≤V _{IN} ≤10V		1	6	mV
		CM1117 -3.3 I _{OUT} =0mA, 4.75V≤V _{IN} ≤10V		1	6	mV
ΔV_{OUT}	Load Regulation (Note 3)	CM1117 -ADJ V _{IN} -V _{OUT} =3V, 10mA≤I _{OUT} ≤1A		0.2	0.4	%
		CM1117 -1.8 V _{IN} =3.2V, 0≤I _{OUT} ≤1A		1	10	mV
		CM1117 -2.5 V _{IN} =3.9V, 0≤I _{OUT} ≤1A		1	10	mV
		CM1117 -3.3 V _{IN} =4.75V, 0≤I _{OUT} ≤1A		1	10	mV
V_{IN} - V_{OUT}	Dropout Voltage	I _{OUT} =100mA		1.10	1.20	V
	(Note 4)	I _{OUT} =500mA		1.15	1.25	V
		I _{OUT} =1A (TO-252)		1.20	1.30	V
I _{LIMIT}	Current Limit	V_{IN} - V_{OUT} =5 V , T_J =25 $^{\circ}$ C	1000	1200	1500	mA
	Minimum Load Current (Note 5)	CM1117 -ADJ V _{IN} =15V		1.7	5	mA
	Quiescent Current	CM1117 -1.8, V _{IN} ≤15V		5	10	mA
		CM1117 -2.5, V _{IN} ≤15V		5	10	mA
		CM1117 -3.3, V _{IN} ≤15V		5	10	mA
	Thermal Regulation	T _A =25℃, 30ms Pulse		0.01	0.1	%/W
	Ripple Regulation	f_{RIPPLE} =120Hz, V_{IN} - V_{OUT} =3V V_{RIPPLE} =1 V_{PP}	60	75		dB
	Adjust Pin Current			60	120	μA
	Adjust Pin Current Change	10mA≤I _{OUT} ≤1A 1.4V≤V _{IN} -V _{OUT} ≤10V		0.2	5	μА
	Temperature Stability	- III	1	0.5		%
	Long Term Stability	T _A =125°C, 1000Hrs		0.3		%
	RMS Output Noise	(% of V _{OUT}), 10Hz≤f≤10kHz		0.003		%
	Thermal Resistance Junction-to-Case	3-Lead SOT-223 3-Lead TO-252		15.0 3.0 10		°C/W °C/W °C/W
	Thermal Resistance Junction-to-Ambient (No heat sink; No air flow)	3-Lead SOT-223 3-Lead TO-252 (Note 6)		136 79 92		°C/W °C/W °C/W

1A Low Dropout Voltage Regulator

Note 1: Typical Values represent the most likely parametric norm.

Note 2: All limits are guaranteed by testing or statistical analysis.

Note 3: Load and line regulation are measured at constant junction room temperature.

Note 4: The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input

voltage. It is measured when the output voltage has dropped 100mV from the nominal value obtained at V_{IN} = V_{OUT} +1.5V.

Note 5: The minimum output current required to maintain regulation.

Note 6: Minimum pad size of 0.038in²

Application Hints

Like any linear voltage regulator, CM1117 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

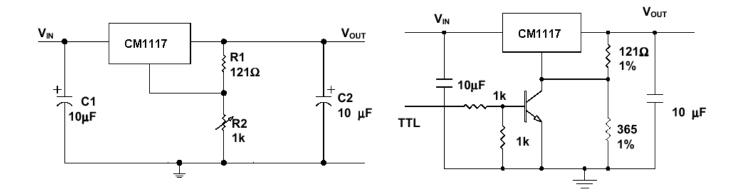
Input Capacitor

An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

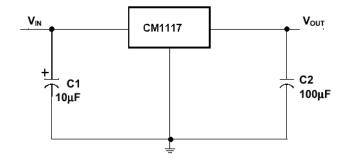
An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $22\mu\text{F}$ but may be increase without limit.

Thermal Considerations


It is important that the thermal limit of the package is not exceeded. The CM1117 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

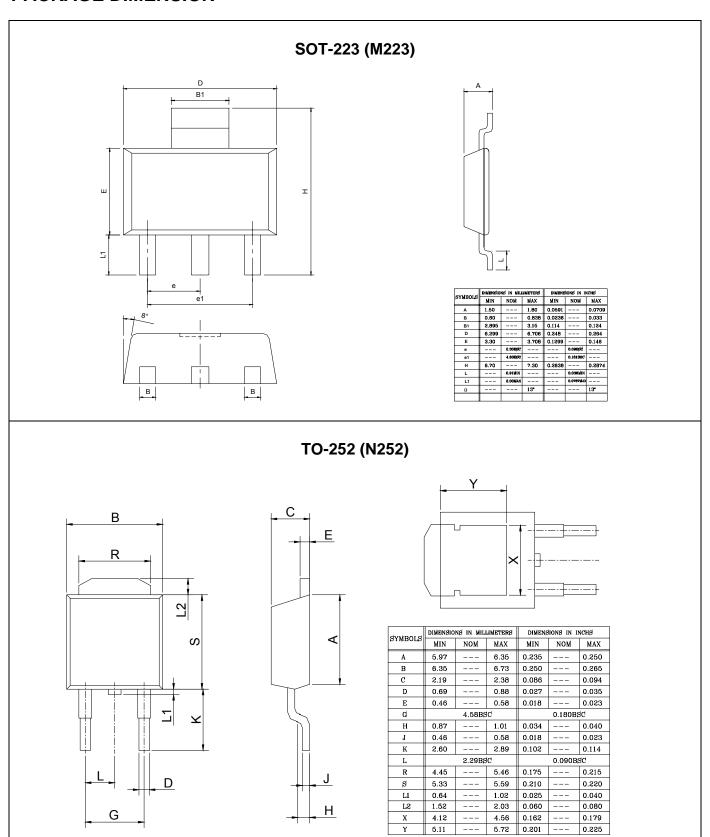
The power dissipation (P_D) is

 $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$



APPLICATION CIRCUIT

Adjustable Regulator VOUT = 1.25V (1+R2/R1)


5V Regulator with Shutdown

Fixed Voltage Regulator

PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan	7F-6, No.32, Sec. 1, Chenggong Rd., Nangang District, Taipei City 115, Taiwan
TEL: +886-3-567 9979	TEL: +886-2-2788 0558
FAX: +886-3-567 9909	FAX: +886-2-2788 2985