

TK-2260 :
Не комплектуется антенной
Антенна комплектуется дополнительно

ОБЩИЕ ПОЛОЖЕНИЯ / СИСТЕМНЫЕ УСТАНОВКИ

ВВЕДЕНИЕ

НАЗНАЧЕНИЕ ЭТОГО РУКОВОДСТВА

Это руководство предназначено для использования опытными техниками знакомыми с аналогичными типами оборудования связи. Оно содержит всю необходимую информацию по обслуживанию на момент публикации. Изменения, которые могут произойти после публикации сообщаются дополнительно.

ПОРЯДОК ЗАМЕНЫ КОМПЛЕКТУЮЩИХ

При необходимости замены комплектующей радиостан-, ции, не забудьте указать ее полный идентификационный номер. это относится ко всех узлам, компонентам и шасси. если номер части неизвестен, отправляйте ее подробнейшее описание для дальнейшей идентификации и замены на новую запчасть.

Модель	ТХ-RX Модуль	Частотный диапазон	Замечания

ПЕРСОНАЛЬНАЯ БЕЗОПАСНОСТЬ
Для персональной безопасности рекомендованы следующие меры предосторожности :
НЕ ПЕРЕДАВАЙТЕ, до тех пор, пока не убедитесь, что все разъемы и контакты надежно соединены и подключены. ОТКЛЮЧИТЕ и НЕ РАБОТАЙТЕ с этим оборудованием во взрывоопасных средах.
Это оборудование должно обслуживаться лишь квалифицированным персоналом.

ОБСЛУЖИВАНИЕ

Радиостанция легко обслуживается с помощью приведенных ниже в описании схематических диаграмм, видов печатных плат и процедур настройки.

СИСТЕМНЫЕ УСТАНОВКИ

TK-2260

ПЕРЕСТРОЙКА

ПЕРЕСТРОЙКА

Режим	Функция
Эксплуатация	Обычное использование
Программирование	Для обмена между радиостанцией и ПК (ІВМ совместимый).
Программирование данных	Запись-чтение частот и друихпара- метров в радиостанцию
Тест с ПК	Для проверки соединения с ПК. Необходимо програмное обеспе- чение KPG-87D
Клонирование	Для переноса данных и одной ра- диостанции в другие

2. Как включить режимы

Режим	Операция
Эксплуатация	Питание ВКЛ
Программирование	Прием команд от ПК
Клонирование	[PTT]+[Side2]+Питание ВКЛ (Две секунды

3. ПРОГРАММИРОВАНИЕ

3-1.Предисловие

TK-2260 программируется с помощью персонального компьютера, программатора (KPG-22) и программного обеспечения (KPG-87D).

Программное обеспечение можно установить на IBM РС или совместимый. Рис. 1 показывает подключение IBM PC для программирования.

3-2. Процедура соединения

1. Соедините TK-2260 с персональным компьютером через программатор.
2. При включении питания радиостанция переходит в режим эксплуатаци. Если ПК передает команду, то радиостанция переходит в режим программирования. При передаче данных с радиостанции, светится красный светодиод.
При загрузке данных в радиостанцию, светится зеленый светодиод.

Примечания:
$¥$ Данные, запомненные в персональный компьютер должны соответствовать модели станции при записи.
¥ Переведите TK-2260в редим ПК, при подключении интерфейсного кабеля.

3-3. Описание KPG-22
(Кабель для программирования: Опция)
Кабель KPG-22 требуется для подключения TK-2260 к компьютеру. В блоке D-полуразъема (25-pin) он имеет схему преобразования логического уровня RS-232C в TTL.

KPG-22 подключается к разъему SP/MIC на TK-2260 и параллельному порту RS-232C на компьютере.

3-4. Описание программного обеспечения
KPG-87D - это программное обеспеєние для TK-2260 записанное на CD-ROM. Оно работает под OC Windows 98, ME, Windows 2000 или XP на компьютере IBM или ноутбуке.

Данные могут быть введены ил считаны с TK-2260 и будут видны на экране. Запрограммированные или отредактированные данные могут быть затем распечатаны.

Рис. 1

4. Клонирование

4-1. Клонирование
"Режим клонирования" позволяет копировать данные с одной радиостанции на другие.

Ваш дилер также может запрограммировать радиостанцию без использования компьютера.

4-2. Пример

Радиостанция может копировать свои данные на 1 или более радиостанции, через RF-соединение.

Функция клонирования и активация разъемов есть в Pe жиме клонирования.

4-3. Работа

1. Для включения режима Клонирования, нажмите и удерживайте клавиши [PTT] и [side2] при включении радиостанции.
2. Ждите 2 секунды. Светодиод загорится оранжевым и радиостанция перейдет в режим "Клонирование".
3. Выберите кол-во каналов с помощью клавиш Side 1 (увеличение числа каналов) и Side2 (уменьшение числа каналов).
4. Для включения режима Клонирования, нажмите и удерживайте клавиши [PTT] и [side2] при включении радиостанции.
5. Подождите 2 секунды. Светодиод загорится оранжевым и радиостанция перейдет в режим "Клонирование".
6. Выберите номера каналов из таблицы для клонирования.
7. Нажмите [PTT] на радиостанции для начала передачи данных. Когда радиостанция работает на прием данных, светодиод будет гореть зеленым светом.
Когда мастер-радиостанция закончит передачу данных на клонируемую радиостанцию, звучит сигнал. Если передача данных при клонировании была прервана, принимающая радиостанция выдаст сигнал ошибки.
8. Если осуществить выход из режима клонирования, записать данные в режиме пользования невозможно.
9. Когда клонирование успешно завершено, функции "Scan" и "Key lock" вернутся к их ранним значениям - (Scan = ВЫКЛ, Key lock = ВЫКЛ).

Примечания:

$¥$ Дилер может клонировать данные на 2 или более радиостанций путем простого повторения процедуры.

Таблица частот клонирования

Таблица частот клонированияя (MHz)	
1	$136 \sim 174$
2	136.000
3	138.000
4	140.000
5	142.000
6	144.000
7	146.000
8	148.000
9	150.000
10	152.000
11	154.000
12	156.000
13	158.000
14	160.000
15	162.000
16	164.000
17	166.000
18	168.000
19	170.000
20	172.000
	174.000

¥ Если в радиостанции отключен Режим Клонирования, она не сможет переписывать свои данные.
$¥$ Таблица в правом углу с частотами применяемыми для клонирования, используется для беспроводного клонирования.
$¥$ Режим клонирования не работает при севшей батарее.
¥ Радиостанция не может быть "Мастером", если она не запрограммирована. При нажатой [РТТ] звучит тон "ошибки".
$¥$ Язык, используемый в клонировании, зависит от установок "Тип модели". Типы С, С2, С5 и С6 ТК-3207 используют китайский язык, остальные типы - английский.
¥ Однажды запрограммированная, как Мастер радиостанция не может стать впоследствии принимающей. Таким образом защищаются данные Мастер-станции.
$¥$ Данные также могут передаваться путем перехода в режим Безпроводного Клонирования.
$¥$ Режим клонирования может быть установлена ТОЛЬКО авторизированным сервисным персоналом.
¥ Режим клонирования должен быть отключен в случае поставки оконечному потребителю.
\nexists При клонировании удалите антенны с обоих станций с Мастер-станции и приемной станции.
¥ В режиме клонирования выходная мощность станции автоматически устанавливается в режим "Low".

РАЗБОРКА

Отсоединение шасси от корпуса.

1. Отсоедините регуляторы каналов и громкости (Z и X).
2. Отвинтите 2 винта С.
3. Приподниммите и извлеките шасси из корпуса v . (Для более легкого отсоединения используйте отвертку.)

Отсоединение от шасси модуля TX-RX.

1. Удалите прослойку b с разъема SP / MIC на блоке TXRX.
2. Отвинтите 11 винтов n, фиксирующих модуль TX-RX.
3. Отсоедините фиксатор m разъем\$Р / МІС.
4. Удалите припой с положительного терминала вместе с прип̧ойным металлическим контактом.
5. Удалите припой с положительного терминала вместе с припৃойным металлическим контактом.
ПримечаниєВы можете вынуть блок TX-RX с шасси и без удаления припоя с терминала +. Однако, в этом случае, вы не сможете прикрепить прослойку (G53-1605-
3) которая изолирует положительный терминал от шасси. Таким образом, обязательно отпаивайте положительный терминал.
6. Удалите FPC с разъема гибкого кабеля.
7. Отсоедините и выньте блок TX-RX с шасси.

Отсоединение аккумляторной защелки.

1. Нажмите верхнюю часть защелки и наклоните ее в сторону шасси, после чего удалите фиксатор Z .
2. Снимите аккумуляторную защелку в ооответствии с рисунком.

Прикрепление аккумуляторной защелки

1. Вставьте ось в отверстие с одной стороны, прикрепив секцию защелки z

Осторожно соберите все детали защелки так, как это показано на рисунке и закрепите ее в гнезде под аккумуляторную защелку.

СБОРКА

Сборка аккумуляторной защелки

1. Поместите планку X в фиксатор Z.
2. Разместите на планке пружину C.
3. Разместите пружину V на фиксаторе, как показано на рисунке и совместите все детали на одной оси.
4. Вставьте продольную ось, как показано на рисунке, и соедините с ее помощью конструкцию.

Примечания по установке полюса.

1. Установка положительного полюса на шасси. Используя указанные процедуры, всегда устанавливайте положительный полюс перед тем, как на шасси монтируется модуль TX-RX.
2. Отсоедините фиксатор от корпуса положительного полюса.
3. Установите корпус положительного полюса на шасси, как это показано на рисунке ниже (действие 3).
4. Снова присоедините фиксатор к корпусу положительного полюса (действие 4).

5. Установка шасси в пластмассовый корпус.
6. Прикрепите водоотталкивающий шнур к шасси, как это показано на рисунке, приведенном ниже, и убедитесь, что шнур плотно вошел в свою канавку.
7. Вставьте динамик в специальную нишу на корпусе x , и убедитесь, что он надежно зафиксирован.

8. Осторожно установите шасси во внутрь пластмассового корпуса С.

Внимание:Убедитесь, что провода от динамика не пережимаются другими элементами.
4. Сожмите шасси v и пластмассовый корпус вместе и соедините их.

Внимание:Если корпус разъема SP / MIC не становится в свое гнездо после соединения шасси и пластмассового корпуса, переустановите их.

TK-2260

СБОРКА

3. Прикрепление антенного разъема к шасси.
С помощью винтов антенный разъем прикрепляется к шасси, как показано на рисунке ниже, таким образом, чтобы он располагался по центру отверстия в шасси.

Винт завинтить вторым
4. Втулки регулятора переключения каналов и регулятора громкости
Обратите внимание, что своим цветом, весом и размерами втулки указанных регуляторов отличаются от других. (Втулка рег-тора громкости серебристая, а втулка регулятора переключения каналов - золотистая). При отсоединении указанных втулок используется специальная вывертка (ключ):

Вывертка (Part No. :W05-1012-00)

ОПИСАНИЕ СХЕМЫ

1. Частотная конфигурация

В приемнике используется принцип двойного преобразования. Величина первой промежуточной частоты (IF) составляет 38.85 МГц, второй - 450 Кгц.

Сигнал с локального гетеродина поступает с синтезатора фазовой автоподстройки частоты (ФАПЧ) см. Рис.1.

Рис. 1. Частотная конфигурация.

2. Приемник

Приемник представляет собой супергетеродин двойного

Рис. 2. Приемник

1) Усилитель радиочастот (RF AMP)

Сигнал, принятый с антенны проходит через схему переключения прием-передача, (D103,D104,D105 и D106) полосовой фильтр BPF (L214 and L213), и подается на высокочастотный усилитель (Q205).
Усиленный сигнал фильтруется на BPF (L209 and L211) фильтре и поступает на смеситель. Фильтры подстраиваются варикапами (D203,D204,D205 и D206).
Входное напряжение на варикапы регулируется с выхода микропроцессора (IC405).

2) Первый смеситель

Сигнал смешивается с сигналом сгенерированной схемой PLL (ФАПЧ) Q1для получения первой промежуточной частоты 38.85 МГц.
Для дальнейшего устранения паразитных сигналов сигнал первой промежуточной частоты поступает на два моноблочных кварцевых фильтра (MCF XF201).
3) Усилитель промежуточной частоты

Сигнал первой промежуточной частоты фильтруется (XF201) от сигналов в соседнем канале.
Отфильтрованный ПЧ-1 сигнал усиливается на УПЧ-1 (Q203) и поступает на УПЧ-2 (IC201). На этой IC построен второй смеситель, второй гетеродин, усилитель ограничитель квадратичный детектор и RSSI (Received Signal Strength Indicator).
Второй смеситель смешивает сигнал ПЧ-1 (38.4 МГц) с сигналом второго гетеродина (TCXO X1) и формирует сигнал ПЧ-2 -450КГц.
Сигнал ПЧ-2 проходит керамический фильтр (CF201) и поступает на усилитель ограничитель а потом демодулируется на квадратичном детекторе с керамическим дискриминатором (CD201). Продетектированный сигнал поступает на аудио схему .

4) Схема переключения полосы Wide/Narrow

 Narrow(Узкую) и Wide (Широкую) полосу можно установить для каждого канала переключая уровень детектирования. WIDE ("0") и NARROW ("1") логические уровни с IC405, pin 45.Когда принимается WIDE, Q202 включен, когда NARROW - выключен.

Рис. 3. Цепь переключения Wide/Narrow

5) Схема УНч

Продетектированный сигнал с IC201 поступает на усилитель выполненный на IC301 для коррекции.
Далее сигнал проходит через регулятор громкости на усилитель мощности 34 (IC302) а затем на громкоговоритель.

ОПИСАНИЕ ЦЕПИ

6) Шумоподавитель

AF часть сигнала с IC снова поступает на ФМ IC (IC201), а шумовая составляющая усиливается и подавляется фильтром, усилитель вырабатывает напряжение DC, соответствующее уровню шума.
Сигнал DC с ФМ IC поступает на аналоговый порт микропроцессора (IC405). IC405 детерминирует выходные звуки с динамика путем проверки входного напряжения - выше или ниже оно, чем действительная величина. Для выходных звуков с динамика, IC405 посылает высокий сигнал на цепь SP MUTE и строит IC302 через Q303, Q304, Q305, Q306 и Q316. (См.Рис. 4)
7) Приемный Signalling
(1) QT/DQT

Сигнал ЧМ с выхода IC(IC201) поступает через IC301 на микропроцессор (IC405). IC405 определяет величину QT или DQT, и управляет SP MUTE и выходными звуками динамика в соответствии с результатами шумоподавления.
(2) MSK (Fleet Sync)

Входной сигнал MSK с FM ICидет наріп 31 IC 301. Сигнал демодулируется демодулятором MSK на IC 301. Демодулированные данные поступают на обработку в ЦПУ. RECEVE SIGNAШNG

Рис. 4. AF усилитель и шумоподавитель
(3) DTMF

Входной DTMF-сигнал с FM IC (IC201) поступает на IC301. Информация декодируется и затем обрабатывается ЦПУ.

3. Частотный синтезатор с ФАПЧ

Цепь ФАПЧ генерирует первый локальный колебательный сигнал приема и сигнал RF для передачи.

1) ФАПЧ

Шаг сетки частот цепи ФАПЧ равен $2.5,5,6.25$ или 7.5 kHz . 12.8 MHz . Колебательный сигнал делится на IC1 с фиксированным делителем для производства (ГУН) выходного сигнала, который буфферно усиливается на Q2 и затем делится на IC1 с программируемым делителем. Поделенный сигнал сравнивается с фазовым 5 или 6.25 kHz сигналом с фазововго компаратора на IC1. Выходной сигнал с фазового компаратора фильтруется через ФНЧ и идет на ГУН для управления частотой колебания. (См. Рис. 5)
2) $\mathrm{VCO}(Г У Н)$

Рабочая частота генерируется в режиме передачи транзистором Q4 и в режиме приема - Q3. Частота генерируется с помощью ГУНа, напряжение на который поступает с фаз.компаратора, на диоды (D4 и D7 в режиме передачи и D5 и D9 в режиме приема). RX pin - высокое (1) в режиме приема, если Q5 включен. TX pin - высокое (1) в режиме передачи. Выходы с Q3 и Q4 усиливаются на Q6 и идут на усилители BЧ.

Рис. 5 Схема ФАПЧ

3) Детектор разблокировки

IEсли появляется пульсирующий сигнал на выводе LD IC1, появляется условие для разблокировки, и получается напряжение на C4, R5 и D1 которое поступает на микропроцессор. Когда он определяет это условие, передатчик отключается, игнорируя входной сигнал с переключателя PTT.

4. ПЕРЕДАЮЩАЯ СИСТЕМА

1) Микрофонный усилитель

Сигнал с микрофона идет через IC301.
Когда раскодируется DTMF, он выключен для настройки входного сигнала микрофона IC301. Сигнал идет через Аудио процессор (IC301) для настройки максимальной девиации, и поступает на модуляционный вход ГУНа.

ОПИСАНИЕ ЦЕПИ

Рис. 6 Микрофонный усилитель
2) Управляющий и оконечный усилитель Сигнал после переключателя T/R (D101 вкл) усиливается предусилителем (Q102) и управляющим (Q103) до 50 mB . После управляющего сигнал усиливается мощным ВЧ усилителем (Q106) до 5.0Bт (1Bт в режиме low). ВЧ усилитель мощности построен на двух MOS FET. С выхода этого усилителя сигнал поступаете на фильтр гармоник (LPF)и антеный переключатель (D103 andD104) и на антенный разъем.

Fig. 7 Управляющий оконечный усилители и схема APY
3) Схема АРУ.

Схема АРУ контролирует ток, протекающий через ВЧ усилитель (Q106) и поддерживает его постоянным. Напряжение на R127, R128 и R129 пропорционально току протекающему через ВЧ усилитель мощности. Оно подается на дифференциальный усилитель IC101(1/2). IC101(2/2) сравнивает выходное напряжение IC101(1/2) с опорным напряжением IC405. С выхода IC101(2/2) напряжение VG управляет управляющим и оконечным вЧ усилителями.
Измениние уровня выходной мощности HI/LOW производится изменением опорного напряжения.

Данные QT,DQT QTVCO Line - идут на вывод 24 ЦПУ. Этот сигнал проходит через НЧ-CR-фильтр, смешивается с аудио сигналом и поступает на входмодулятора гУН. Девиация ТХ корректируется Цпу.
(2) DTMF

Данные с высокой скорость выходят с вывода 2 ЦПУ. Сигнал проходит через НЧ-CR-фильтр, и обеспечивает тоны TX и SP, а затем идет на аудио-процессор на MC (IC301). Там сигнал смешивается с аудио-сигналом и идет на ГУН.
Девиация TX настраивается ЦПУ.
(3) MSK (Fleet Sync)

Fleet Sync использует 1200 bps и 2400 bps MSK сигнал с вывода 6 IC301. После чего сигнал идет на ГУН, и при раскодировке МSK, настраивается входной сигнал микрофона.

5. ИСТОЧНИК ПИТАНИЯ

Есть четыре блока питания 5 V для микропроцессора: 5M,5C,5R, и 5T. 5М для микропроцессора - поступает тогда как включено питание.

5 C общее 5 V выдается когда не установлено SAVE в OFF.

5R 5V для приема и поступает в течении приема.
5 T 5 V для передачи и выдается в течении передачи.

6. Схема управления

Схема управления состоит из микропроцессора (IC405) и периферии. Она управляет модулем TX-RX. Основные функции IC405:
(1) Переключает прием-передача по сигналу РTT.
(2) Считывает группу, частоту, и программные данные из ячеек памяти.
(3) Передает данные о частоте в PLL (ФАПЧ)
(4) Включает-выключает схему шумоподавителя по уровню напряжения.
(5) Отключает аудио проверяя входные данные.
(6) Передает тон и декодирует данные.

1) Схема частотного сдвига.

Микропроцессор (IC405) работает на частоте 7.3728 MHz . Генератор имеет цепь смещения частоты BEAT SHIFT SW (Q407,Q408).
Можно сдвинуть чстоту на один бит если эта частота каким то образом модулирует частоту радиостанции.
4) Кодер сигналинг.
(1) QT/DQT

QT,DQT данные с QTTCXO поступают с ножки 28 ЦПУ
Этот сигнал проходит через HЧ-CR-фильтр
и выходит как TCXO(X1).

ОПИСАНИЕ СХЕМЫ

Fig. 8 Сдвиг частоты

2) Схема памяти

Цепь памяти состоит из ЦПУ (IC405) и ОЗУ (IC406). ОЗУ (EEPROM) емкостью 64 k бита содержит программу управления для ЦПУ радиостанции и данные о каналах и различных функциях.

7. Система управления

Клавиши и селектор каналов схемы.
Сигнал с клавиш и селектора каналов поступает прямо на микропроцессор, как показано на Рис.11.

Рис. 11 Система управления
3) Предупреждение о низком заряде акуммуляторов.

С помощью микропроцессора проверяется заряд АКБ.
Радиостанция генерирует предупреждающий тон, когда напряжение падает до опасного уровня (см. таблицу).
(1) Красный светодиод начинает мигать, когда напряжение падает ниже уровня (1) из таблицы в процессе передачи.
Замечание:
Радиостанция проверяет напряжение аккумулятора на протяжении приема даже тогда, когда в FPU, функция Battery Warning status установлена в On TX (заводск. установка). Однако, светодиод не будет мигать во время приема. При работе на передачу, светодиод мигает для генерации предупреждающего тона о низком заряде аккумулятора.
(2)Радиостанция немедленно останавливает передачу, когда напряжение падает ниже уровня (2) из таблицы Когда клавиша РТТ отключена, будет звучать предупреждающий сигнал "бип".

	Ni-Cd АКБ	Ni MH АКБ
(1)	$6.2[\mathrm{~V}]$	$6.2[\mathrm{~V}]$
(2)	$5.9[\mathrm{~V}]$	$5.9[\mathrm{~V}]$

Рис. 10 Предупреждение о низком заряде.

TK-2260

ТЕРМИНАЛЬНАЯ ФУНКЦИЯ / ПОЛУПРОВОДНИКИ

ТЕРМИНАЛЬНАЯ ФУНКЦИЯ (РАЗЪЕМ)

CN401

Pin No.	Название	І/О	Функция
1	В	।	В (Напряжение батареи)
2	SB	О	Переключатель В
3	SP1	I	Аудио вход
4	SP2	О	Аудио выход
5	GND	-	Корпус
6	EN1	।	Вход импульсов кодера

Pin No.	Название	।/О	Функция
7	EN2	।	Вход импульсов кодера
8	GND	-	Корпус
9	EN3	।	Вход импульсов кодера
10	EN4	।	Вход импульсов кодера
11	EN5	।	Вход импульсов кодера

ПОЛУПРОВОДНИКИ

Микропроцессор : 30622MAA-B89GP (БЛОК TX-RX : IC405)

Назначение выводов

Pin No.	Название	1/O	Функция
1	PCTV	0	APC/BPF вывод данных управления
2	DTMF	O	DTMF/ вывод биппера
3	NC	-	NC
4	EEPDAT	I/O	EEPROM ввод/вывод данных
5	EEPCLK	0	EEPROM вывод таймера
6	BYTE	-	GND
7	GND	-	GND
8	BSHIFT	0	переключатель битного сдвига
9	NC	-	NC
10	RESET	1	перезагрузка ЦПУ
11	XOUT	0	таймер (часы) ЦПУ (7.3728MHz)
12	VSS	-	GND
13	XIN	1	таймер (часы) ЦПУ (7.3728MHz)
14-15	VCC	-	+5V
16	INT	1	ввод контроля напряжения на АКБ
17	TCLK/DTRDO	I	Базовый ввод данных IC
18	RDF/FD	1	Базовый ввод/вывод данных IC
19	SCLK	0	Базовый вывод таймера на IC
20	D I/O	I/O	Базовый ввод/вывод данных IC
21	TDATA/DTRCLK	0	Базовый вывод данных IC
22	DIR	O	Базовый вывод данных IC
23	STD	1	Базовый ввод данных IC
24	QT VCO	0	QT/DQT вывод
25	DTRLOADN	0	Базовый вывод данных IC
26	1/2 OSC	0	3.6864 MHz (7.3728 MHz/2)
27	PTT	1	Ввод клавиши РТТ
28	QT TCXO	0	QT/DQT вывод
29	TXD	0	Послед. данные (FPU/FLASH)
30	RXD	1	Послед. данные (FPU/FLASH)
31	GND	-	GND
32	APCSW	0	Переключатель APC
33-34	NC	-	NC
35	DCSW	0	Перекл-ль разряда напряж.APC
36	TX_W/N	0	Переключатель ТХ Широко/Узко
37	RX_SW	0	Переключатель RX ГУН
38	TX_SW	0	Переключатель ТХ ГУН
39	GND	-	GND
40	PLL_UL	I	Ввод опр-ния разблокировки ФАПЧ
41	PLL_STB	0	Стробовый вывод ФАПЧ
42	PLL_DAT	0	Вывод данных ФАПЧ
43	PLL_CLK	0	Часовой вывод ФАПЧ

TK-2260

ОПИСАНИЕ КОМПОНЕНТОВ

ТХ-RX МОДУЛЬ (Х57-6870-20)

No.	Тип	Назначение
IC1	IC	PLL система
IC2	IC	VCO 1/2 делитель
IC101	IC	Компаратор (АРС)
IC201	IC	FM IF система
IC301	IC	Аудио процессор
IC302	IC	AF AMP
IC401	IC	Регулятор напряжения/ 5V
IC402	IC	Регулятор напряжения/ 5V
IC403	IC	Детектор напряжения / Перезагрузка
IC404	IC	Детектор напряжения / INT
IC405	IC	Микропроцессор
IC406	IC	EEPROM
Q1	Транзистор	триплер
Q2	Транзистор	PLL IC fin AMP
Q3	FET	VCO / RX
Q4	FET	VCO / TX
Q5	Транзистор	Переключатель DC / TX VCO
Q6	FET	RF буффер усилителя
Q7	Транзистор	Переключатель DC / RX VCO
Q8	FET	Фильтр
Q9	Транзистор	RF AMP
Q102	Транзистор	RF AMP
Q103	FET	TX Drive AMP
Q104	Транзистор	Переключатель АРС
Q105	FET	Переключатель АРС
Q106	FET	Оконечный усилитель TX
Q107	Транзистор	Переключатель АРС
Q108	FET	Переключатель АРС
Q109	Транзистор	Переключатель АРС
Q202	Транзистор	Переключатель W/N / RX
Q203	Транзистор	IF AMP
Q204	FET	Смеситель
Q205	FET	RF AMP
Q301	Транзистор	Переключатель W/N / TX
Q302	Транзистор	MIC AGC
Q303	Транзистор	Переключатель DC / Настройка SP
Q304	Транзистор	Переключатель DC
Q305	Транзистор	Переключатель DC / Настройка SP
Q306	FET	Переключатель настройки SP
Q316	FET	Переключатель настройки SP
Q401	Транзистор	Переключатель LED / Красный
Q402	Транзистор	Переключатель LED / Зеленый
Q403	FET	Переключатель 5T
Q404	FET	Переключатель 5R
Q405	Транзистор	Переключатель 5С
Q407	FET	Переключатель битового сдвига
Q408	FET	Переключатель битового сдвига

No.	Тип	Назначение
D1	Диод	Фильтр
D4	Варикап	Управление частотой / TX VCO
D5	Варикап	Управление частотой / RX VCO
D7	Варикап	Управление частотой / TX VCO
D9	Варикап	Управление частотой / RX VCO
D10	Варикап	Модулятор
D11	Диод	Управление током
D101	Диод	Переключатель TX/RX RF
D102	Диод Zener	Защита АРС
D103	Диод	Переключатель ANT
D104	Диод	Переключатель ANT
D105	Диод	Переключатель ANT
D106	Диод	Переключатель ANT
D202	Диод	Переключатель TX/RX RF
D203	Варикап	Настройка RF BPF
D204	Варикап	Настройка RF BPF
D205	Варикап	Настройка RF BPF
D206	Варикап	Настройка RF BPF
D301	Диод	Детектор
D302	Диод	Детектор
D303	Диод	Изоляция
D401	Диод	Защита 5V
D402	Диод	Реверсионная защита
D403	LED	LED/ Красный
D404	LED	LED/ Зеленый

ДОПОЛНИТЕЛЬНАЯ ПЛАТА

Ref. No.	Функция	Операция/Условие
Q901	FET	Переключатель WIN / TX

TK-2260

СПИСОК КОМПЛЕКТУЮЩИХ

\triangle

L: Скандинавия	K: США	P: Канада
Y:PX (Д.Восток, Гаваи)	T: Англия	E: Европа
Y:AAFES (Европа)	X: Австралия M: Другие страны	

TK-2202/2206 (Y50-5890-XX)
БЛОК TX-RX (X57-6870-20)

Ref. No.	Address	$\begin{aligned} & \mathrm{New} \\ & \text { parts } \end{aligned}$	No. Части	Описание	Destination
TK-2202/2206					
1	1A	*	A02-3851-23	КОРПУС (16 КАН)	BM
1	A	*	A02-3852-23	КОРПУС (8 КАН)	AK,AM
2	14	*	A02-3858-13	КОРПУС	
3	34	*	A10-4078-01	ШАССИ	
4	B	*	A21-1644-13	ВЕРХНЯЯ ПАНЕЛЬ (16 КАН)	BM
4	1 B	*	A21-1645-13	ВЕРХНЯЯ ПАНЕЛЬ (8 КАН)	AK,AM
6	2C,2E	*	B09-0680-03	ЗАГЛУШКА (SP/MIC)	
7	B	*	B11-1817-04	ILLUMINATION GUIDE	
8	B	*	B43-1156-04	БЕЙДЖ	
9	1 C	*	B62-1762-00	ИНСТРУКЦИЯ	AK,AM
10	1E	*	B62-1763-00	ИНСТРУКЦИЯ	BM
11	1A	*	D10-0649-03	ЗАЩЕЛКА	
12	1A	*	D21-0863-04	ШТИФТ (ОСЬ)	
13	1A	*	D32-0441-03	ФИКСАТОР	
14	2A	*	E04-0451-05	КОАКСИАЛЬНЫЙ ВЫВОД RF (SMA)	
15	3B	*	E23-1253-04	ПОЛЮС (ВАТТ-)	
16	2B		E37-0794-05	ПРОВОД (SP+)	
17	2B		E37-0803-05	ПРОВОД (SP-)	
18	3A	*	F20-3353-14	ВСТАВНОЙ ЛИСТ (БАТ ШАССИ +)	
19	2 A	*	G01-4542-04	ПРУЖИНА (ЗАЩЕЛКА)	
20	1A	*	G01-4543-04	ПРУЖИНА(STOPPER)	
21	2B	*	G10-1330-04	ФИБР.ПРОСЛОЙКА (IC302:AUDIO	
22	3A	*	G11-4283-04	РЕЗИН.ПРОСЛОЙКА (Q106:FINAL	FET)
23	2A	*	G11-4313-04	ПРОСЛОЙКА (МІС)	
24	3B	*	G11-4318-04	ПРОКЛАДКА	
25	3A	*	G11-4320-14	ПРОКЛАДКА	
26	2B,3B	B	G11-4322-04	ПРОКЛАДКА	
27	2A	*	G11-4323-04	ПРОКЛАДКА	
29	3B	*	G13-2009-04	ВЫВОД (ВЫВОД АКБ -)	
30	3A	*	G13-2033-04	ПОДЛОЖКА (TERMINAL BATT-)	
31	3B	*	G13-2034-14	ПОДЛОЖКА (ШАССИ)	
32	2B	*	G13-2037-04	ПОДЛОЖКА (CHASSIS VOL/CH)	
33	3A	*	G13-2038-04	ПОДЛОЖКА (CHASSIS-CERAMIC FILTE	
34	2 A	*	G13-2039-04	ПОДЛОЖКА (РСВ-CERAMIC FILT	
35	3A	*	G53-1604-03	УПАКОВКА (ШАССИ)	
36	3A	*	G53-1605-03	УПАКОВКА (ПОЛЮС АКБ +)	
37	2B	*	G53-1606-03	УПАКОВКА(VOL/CH/LED)	
38	1B	*	G53-1607-03	УПАКОВКА (SP/MIC)	
39	2B	*	G53-1608-03	УПАКОВКА (SP)	
40	2A	*	G53-1609-14	УПАКОВКА(МІС)	
41	2B	*	G53-1610-04	УПАКОВКА(SMA)	
43	2C,2F	*	H12-3158-05	УПАКОВОЧНОЕ КРЕПЛЕНИЕ	
44	1D	*	H13-2109-03	КАРТОННАЯ КОРОБКА	AK,AM
45	1C,1E		H25-0085-04	КУЛЕК (100/200/0.07)	
46	3D	*	H52-2017-02	КАРТОННАЯ КОРОБКА	AK,AM
47	3F	*	H52-2034-02	КАРТОННАЯ КОРОБКА	BM
48	2C,2F	*	J19-5472-03	ДЕРЖАТЕЛЬ (SP/MIC)	
49	2A	*	J19-5473-03	ДЕРЖАТЕЛЬ АSSY(ВЫВОД АКБ+)	
50	2B	*	J21-8477-04	ФИКСАТОР (VOL/CH)	
51	2B	*	J21-8478-04	ФИКСАТОР (SP/MIC)	
52	2C,2F		J29-0713-05	ПОЯСНОЕ КРЕПЛЕНИЕ	

Ref. No.	Address	$\begin{array}{\|l} \text { New } \\ \text { parts } \end{array}$	No. Части	Описание	Destination
54	2B	*	J82-0092-05	FPC	
56	1A	*	K29-9307-03	УЗЕЛ КНОПКИ (SIDE1/SIDE2)	
57	1A	*	K29-9308-03	УЗЕЛ КНОПКИ (РТТ)	
58	1B	*	K29-9309-03	УЗЕЛ (VOL)	
59	1B	*	K29-9318-03	УЗЕЛ (CH)	
A	$2 B$	*	N14-0808-04	ПЕРККЛЮЧАТЕЛЬ КАНАЛОВ	
B	3	*	N14-0812-04	РЕГУЛЯТОР ГРОМКОСТИ	
C	2A, 28		N30-2604-46	ВИНТЫ (SMA)	
D	3 A		N30-2606-46	ВИНТЫ (CHASSIS)	
E	2A,2B,3B		N83-2005-46	ВИНТЫ (РСВ)	
60	1C, 2 P	*	N99-2043-05	МОНТАЖНЫЙ КОМПЛЕКТ	
61	2B	*	R31-0653-05	ПЕРЕМЕННЫЙ РЕЗИСТОР (POWER SN	N/VOL)
62	2B	*	S60-0427-05	ВРАЩ.ПЕРЕКЛЮЧАТЕЛЬ (16 К)	BM
62	2B	*	S60-0428-15	ВРАЩ.ПЕРЕКЛЮЧАТЕЛЬ (8 К)	AK,AM
63	1B		T07-0369-05	ДИНАМИК	
64	1 C		T90-1036-05	АНТЕННА	AK,AM
65	2D	*	W08-0969-05	ЗАРЯДНОЕ УСТРОЙСТВО	AK,AM
66	1D	*	W08-0970-05	АС АДАПТТЕР(АС120V)	AK
66	1D	*	W08-0971-05	АС АДАПТЕР (АС230V)	AM
БЛОК ТХ-RX (X57-6870-20)					
D403			B30-2156-05	LED (КРАСНЫЙ)	
D404			B30-2157-05	LED (ЖЕЛТЫЙ)	
C1			CK73HB1H332K	CHIP C 3300PFK	
C2			CK73HB1C682K	CHIP C 6800PFK	
C3			CK73GB1A105K	CHIP C 1.0UF K	
C4			CK73HB1C103K	CHIP C 0.010UF K	
C5			CK73HB1H102K	CHIP C 1000PFK	
C6			CK73HB1A104K	CHIP C 0.10UF K	
C7 ,8			CC73HCH1H101J	CHIP C 100PF J	
C9			CC73HCH1H100D	CHIP C 10PF D	
C10			C92-0713-05	CHIP-TAN 10UF 6.3WV	
C11			CC73HCH1H101J	CHIP C 100PF J	
C12			CK73HB1H102K	CHIP C 1000PFK	
C13			CK73HB1A104K	CHIP C 0.10UF K	
C14			CK73HB1C103K	CHIP C 0.010UF K	
C15			CC73HCH1H100D	CHIP C 10PF D	
C16			CK73HB1H102K	CHIP C 1000PFK	
C17			CC73HCH1H470J	CHIP C 47PF J	
C18			CC73HCH1H180J	CHIP C 18PF J	
C19			CK73HB1A104K	CHIP C 0.10UF K	
C21			C92-0713-05	CHIP-TAN 10UF 6.3WV	
C 22			C92-0502-05	CHIP-TAN 0.33UF35W	
C24			CK73HB1H102K	CHIP C 1000PFK	
C25			CC73HCH1H020B	CHIP C 2.0PF B	
C26			CC73HCH1H300」	CHIP C 30PF J	
C27			C92-0697-05	CHIP-TAN 3.3UF 16WV	
C29, 30			CK73HB1H471K	CHIP C 470PF K	
C32			C92-0001-05	CHIP C 0.1UF 35WV	
C33,34			CK73HB1H102K	CHIP C 1000PFK	
C35			CC73HCH1H270	JCHIP C 27PF J	

СПИСОК КОМПЛЕКТУЮЩИХ

БЛОК TX－RX（X57－6870－20）

Ref．No．	Address	$\begin{aligned} & \text { New } \\ & \text { parts } \end{aligned}$	No．Части		Описание	Destination
C38			CC73HCH1H060B	CHIP C	6．0PF B	
C39			CK73GB1H332K	CHIP C	3300PFK	
C40			CC73HCH1H040B	CHIP C	4．0PF B	
C41			CK73GB1H682K	CHIP C	6800PFK	
C42			CC73HCH1H060B	CHIP C	6．0PF B	
C43			CC73HCH1H150」	CHIP C	15PF J	
C44			CK73HB1H471K	CHIP C	470PF K	
C45			CK73GB1A105K	CHIP C	1．0UF K	
C47			CC73HCH1H101J	CHIP C	100PF J	
C48			CK73HB1H471K	CHIP C	470PF K	
C49			CC73HCH1H101J	CHIP C	100PF J	
C50			CC73HCH1H100D	CHIP C	10PF D	
C51			CK73HB1H102K	CHIP C	1000PFK	
C52			CC73HCH1H181J	CHIP C	180PF J	
C53			CC73HCH1H0R5B	CHIP C	0．5PF B	
C54			CC73HCH1H040B	CHIP C	4．0PF B	
C55			CC73HCH1H121J	CHIP C	120PF J	
C57			CC73HCH1H1R5B	CHIP C	1．5PF B	
C58			CC73HCH1H060B	CHIP C	6．0PF B	
C59			CC73HCH1H1R5B	CHIP C	1．5PF B	
C60			CC73HCH1H010B	CHIP C	1．0PF B	
C61			CC73HCH1H040B	CHIP C	4．0PF B	
C62			CC73HCH1H050B	CHIP C	5．0PF B	
C63			CC73HCH1H101J	CHIP C	100PF J	
C64			CC73HCH1H040B	CHIP C	4．0PF B	
C65－67			CC73HCH1H050B	CHIP C	5．0PF B	
C68－70			CK73HB1H471K	CHIP C	470PF K	
C71，72			CK73HB1A104K	CHIP C	0．10UF K	
C73，74			CC73HCH1H0R5B	CHIP C	0．5PF B	
C75，76			CK73HB1H102K	CHIP C	1000PFK	
C77			CK73HB1H471K	CHIP C	470PF K	
C78			CC73HCH1H330」	CHIP C	33PF J	
C79			C92－0713－05	CHIP－TAN	10UF 6．3WV	
C80			CK73HB1H471K	CHIP C	470PF K	
C81			CC73HCH1H150」	CHIP C	15PF J	
C82－86			CK73HB1H102K	CHIP C	1000PFK	
C87			CC73HCH1H100D	CHIP C	10PF D	
C90			CK73HB1H102K	CHIP C	1000PFK	
C101			CK73HB1H102K	CHIP C	1000PFK	
C104			CC73GCH1H390J	CHIP C	39PF J	
C105			CK73HB1H102K	CHIP C	1000PFK	
C107			CK73HB1H102K	CHIP C	1000PFK	
C108			CC73GCH1H390」	CHIP C	39PF J	
C109			CK73GB1C104K	CHIP C	0．10UF K	
C110，11			CK73HB1H102K	CHIP C	1000PFK	
C115			CK73HB1H102K	CHIP C	1000PFK	
C116			CC73GCH1H220J	CHIP C	22PF J	
C117			CC73GCH1H100D	CHIP C	10PF D	
C118			CC73GCH1H101J	CHIP C	100PF J	
C119			CC73GCH1H270J	CHIP C	27PF J	
C120			CK73GB1H102K	CHIP C	1000PFK	
C121			CC73GCH1H100D CK73GB1A105K CK73HB1H102K C92－0565－05 CK73HB1H102K CC73GCH1H100D CK73HB1H102K CK73GB1H103K CK73GB1C104K	CHIP C	10PF D	
C123				CHIP C	1．0UF K	
C124，12				CHIP C	1000PFK	
C126				CHIP－TAN	6．8UF 10WV	
C128				CHIP C	1000PFK	
C130				CHIP C	10PF D	
C132				CHIP C	1000PFK	
C133				CHIP C	0．010UF K	
C134				CHIP C	0．10UF K	

Ref．No．	Address	$\begin{aligned} & \text { New } \\ & \text { parts } \end{aligned}$	No．Части		Описание	Destination
C135			CK73GB1A105K	CHIP C	1．0UF K	
C136			CC73GCH1H270J	CHIP C	27PF J	
C137			CK73GB1H103K	CHIP C	0．010UF K	
C138			CK73GB1H102K	CHIP C	1000PFK	
C139			CC73GCH1H680J	CHIP C	68PF J	
C140			CC73GCH1H101J	CHIP C	100PF J	
C141			CC73GCH1H220J	CHIP C	22PF J	
C142			CC73GCH1H150J	CHIP C	15PF J	
C143			CC73GCH1H100D	CHIP C	10PF D	
C144			CC73GCH1H820J	CHIP C	82PF J	
C146			CK73GB1H102K	CHIP C	1000PFK	
C147			CK73HB1H102K	CHIP C	1000PFK	
C148			CK73GB1H102K	CHIP C	1000PFK	
C149			CC73GCH1H220G	CHIP C	22PF G	
C150			CC73GCH1H220J	CHIP C	22PF J	
C151			CK73GB1H102K	CHIP C	1000PFK	
C153			CC73GCH1H100C	CHIP C	10PF C	
C154			CC73GCH1H100D	CHIP C	10PF D	
C155			CC73GCH1H180J	CHIP C	18PF J	
C156			CC73GCH1H120J	CHIP C	12PF J	
C157			CC73GCH1H150J	CHIP C	15PF J	
C158			CC73GCH1H220J	CHIP C	22PF J	
C159			CC73GCH1H070D	CHIP C	7．0PF D	
C160			CC73GCH1H330J	CHIP C	33PF J	
C201			CK73GB1A224K	CHIP C	0.22 UF K	
C206			CK73HB1H102K	CHIP C	1000PFK	
C207			CK73HB1H182K	CHIP C	1800PFK	
C208			CK73HB1H471K	CHIP C	470PF K	
C209			C92－0713－05	CHIP－TAN	10UF 6．3W	
C210			CK73HB1H471K	CHIP C	470PF K	
C211			CK73HB1C103K	CHIP C	0．010UF K	
C213			CK73HB1A104K	CHIP C	0．10UF K	
C214			CC73HCH1H680J	CHIP C	68PF J	
C215			CK73HB1H102K	CHIP C	1000PFK	
C216			CK73GB1C104K	CHIP C	0．10UF K	
C217			CK73HB1A104K	CHIP C	0．10UF K	
C218			CK73GB1C104K	CHIP C	0．10UF K	
C219			CC73HCH1H330J	CHIP C	33PF J	
C220			CK73HB1H102K	CHIP C	1000PFK	
C221			CK73GB1C104K	CHIP C	0．10UF K	
C222			CK73HB1H102K	CHIP C	1000PFK	
C224，225			CK73HB1C103K	CHIP C	0．010UF K	
C227			CK73HB1H102K	CHIP C	1000PFK	
C228			CC73GCH1H100C	CHIP C	10PF C	
C230			CC73HCH1H080B	CHIP C	8．0PF B	
C231，232			CK73GB1H103K	CHIP C	0．010UF K	
C233			CC73HCH1H020B	CHIP C	2．0PF B	
C234			CK73HB1C103K	CHIP C	0．010UF K	
C235			CC73HCH1H090B	CHIP C	9.0 PF B	
C236			CK73GB1H102K	CHIP C	1000PFK	
C237			CC 73 HCH 1 H 050 BCC73GCH1H120JCC73HCH1H060BCK73HB1H102KCK73GB1C104KCK73HB1H102KCC73HCH1H040BCK73HB1H471KCC73GCH1H040BCC73GCH1H270J	CHIP C	5．0PF B	
C238				CHIP C	12PF J	
C239				CHIP C	6．0PF B	
C241				CHIP C	1000PFK	
C242				CHIP C	0．10UF K	
C243				CHIP C	1000PFK	
C244				CHIP C	4．0PF B	
C245				CHIP C	470PF K	
C247				CHIP C	4．0PF B	
C248				CHIP C	27PF J	

TK-2260

Ref. No.	Address	$\begin{aligned} & \mathrm{New} \\ & \text { parts } \end{aligned}$	Номер		лисание	Примесания	Ref. No.	Address	$\begin{aligned} & \text { New } \\ & \text { parts } \end{aligned}$	Номер	Описание	Примечание
C249			CK73HB1H102K	CHIP C 1	1000PFK		C351,352			CK73HB1C103K	CHIP C 0.010UF K	
C250			CC73GCH1H040B	CHIP C 4	4.0PF B		C354			CK73HB1A104K	CHIP C 0.10UF K	
C251			C92-0714-05	CHIP-TAN 4	4.7UF 6.3WV		C370			CK73HB1A104K	CHIP C 0.10UF K	
C252			CK73HB1H102K	CHIP C 1	1000PFK		C401			CC73GCH1H471J	CHIP C 470PF J	
C253			CC73GCH1H4R5B	CHIP C 4	4.5PF B		C402			CK73HB1H102K	CHIP C 1000PFK	
C254			CC73GCH1H270J	CHIP C 27	27PF J		C403			CK73GB1C104K	CHIP C 0.10UF K	
C255			CC73GCH1H4R5B	CHIP C 4	4.5PF B		C405			CC73GCH1H101	CHIP C 100PF J	
C256			CK73HB1H102K	CHIP C 1	1000PFK		C407			CK73HB1H102K	CHIPC 1000PFK	
C258			CK73HB1H102K	CHIP C	1000PFK		C409,410			CK73GB1A105K	CHIP C 1.0UF K	
C260			CK73HB1H102K	CHIP C	1000PFK		C411			CK73HB1H102K	CHIP C 1000PFK	
C262			CK73HB1H102K	CHIP C 1	1000PFK		C415			CK73HB1H471K	CHIP C 470PF K	
C263			CC73GCH1H100C	CHIP C 1	10PF C		C417			CK73GB1A105K	CHIP C 1.0UF K	
C264			CC73GCH1H040B	CHIP C 4	4.0PF B		C418,419			CK73HB1H102K	CHIP C 1000PFK	
C265			CC73GCH1H330J	CHIP C 3	33PF J		C421			CK73GB1A105K	CHIP C 1.0UF K	
C266			CK73HB1H102K	CHIP C 1	1000PFK		C426,427			CK73GB1A105K	CHIP C 1.0UF K	
C267,268			CC73GCH1H030B	CHIP C 3	3.0PF B		C428,429			CK73HB1H102K	CHIP C 1000PFK	
C269			CC73GCH1H33	JCHIP C 3	33PF J		C430			CK73GB1H103K	CHIP C 0.010UF K	
C270			CC73GCH1H040B	CHIP C 4	4.0PF B		C431			CK73HB1C103K	CHIP C 0.010UF K	
C271			CC73GCH1H110J	CHIP C 1	11PF J		C432			CC73HCH1H050B	CHIP C 5.0PF B	
C280			CK73HB1H102K	CHIP C 1	1000PFK		C433,434			CC73HCH1H030B	CHIPC 3.0PF B	
C302			CK73HB1C103K	CHIP C 0	0.010UF K		C435			CC73HCH1H050	CHIP C 5.0PF B	
C304			CK73GB1A224K	CHIP C 0	0.22UF K		C440			CC73GCH1H1R5B	CHIPC 1.5PF B	
C306			C92-0714-05	CHIP-TAN 4	4.7UF 6.3WV		C443			CK73GB1A474K	CHIP C 0.47UF K	
C307,308			CK73HB1A104K	CHIP C 0	0.10UF K		TC1 ,2			C05-0384-05	CERAMIC TRIMMER CAP(10PF)	
C309			CC73GCH1H820J	CHIP C 8	82PF J							
							CN201			E23-1081-05	ВЫВОД	
C310			CK73HB1A683K	CHIP C 0	0.068UF K		CN401		*	E40-6362-05	ГИБКИЙ РАЗЪЕМ	
C311			CK73GB1A105K	CHIP C 1.	1.0UF K		J301			E11-0457-05	ТЛФ РАЗЪЕМ (2.5/3.5)	
C312			CC73GCH1H120J	CHIP C 1	12PF J							
C313			CC73GCH1H121J	CHIP C 1	120PF J		F401			F53-0190-05	ПРЕДОХРАНИТЕЛЬ (2.5А)	
C314			CK73HB1A104K	CHIP C 0	0.10UF K							
							67	2A	*	J30-1282-04	СПЕЙСЕР (ЭЛЕМЕНТ МІС)	
C315			CK73GB1A105K	CHIP C 1	1.0UF K							
C316			CK73GB1C104K	CHIP C 0	0.10UF K		CD201			L79-1582-05	НАСТРАИВАЕМАЯ КАТУШКА	
C317			CK73HB1A104K	CHIP C 0	0.10UF K		CF201	2 A		L72-0973-05	КЕРАМИЧ. ФИЛЬТР (450KHZ)	
C318			C92-0714-05	CHIP-TAN 4	4.7UF 6.3WV		L1			L40-4791-37	КАТУШКА ИНДУКТИВНОСТИ (4.7¢	OOUH)
C319			CC73GCH1H271J	CHIP C 2	270PF J		L3			L40-5681-86	КАТУШКА ИНДУКТИВНОСТИ (0.5	6UH)
							L5			L40-5681-86	КАТУШКА ИНДУКТИВНОСТИ (0.5	6UH)
C320			CK73HB1C103K	CHIP C 0	0.010UF K							
C321			CK73GB1A105K	CHIP C 1.	1.0UF K		L6 ,7			L92-0138-05	ФЕРРИТ	
C322			CK73HB1C153K	CHIP C 0	0.015UF K		L8			L40-1875-92	КАТУШКА ИНДУКТИВНОСТИ (18)	8NH)
C323			CC73GCH1H820J	CHIP C 8	82PF J		L9			L40-3375-92	КАТУШКА ИНДУКТИВНОСТИ (ЗЗ	3NH)
C324			CC73HCH1H820J	CHIP C 8	82PF J		L10			L40-1885-92	КАТУШКА ИНДУКТИВНОСТИ (180	ONH)
							L11			L40-1085-92	КАТУШКА ИНДУКТИВНОСТИ (10	ONH)
C325			CK73HB1A104K	CHIP C 0	0.10UF K							
C326			CK73HB1H102K	CHIP C 1	1000PFK		L12			L92-0138-05	ФЕРРИТ	
C327			CC73HCH1H101J	CHIP C 1	100PF J		L13, 14			L40-2285-92	КАТУШКА ИНДУКТИВНОСТИ (220	ONH)
C328			CK73HB1H391K	CHIP C 3	390PF K		L16			L40-3978-67	КАТУШКА ИНДУКТИВНОСТИ (З9	9NH)
C329,330			CK73GB1A105K	CHIPC 1	1.0UF K		L17			L40-2778-67	КАТУШКА ИНДУКТИВНОСТИ (2	7NH)
							L18, 19			L41-2285-03	КАТУШКА ИНДУКТИВНОСТИ	
C331			CK73HB1A104K	CHIP C 0	0.10UF K							
C332			CK73HB1H471K	CHIP C 4	470PF K		L20,21			L40-3391-86	КАТУШКА ИНДУКТИВНОСТИ (3.3	3UH)
C333,334			CK73GB1C104K	CHIP C 0	0.10UF K		L22			L92-0138-05	ФЕРРИТ	
C335			CC73GCH1H221J	CHIP C 2	220PF J		L23			L40-3975-92	КАТУШКА ИНДУКТИВНОСТИ (З)	9NH)
C336			CK73FB1C474K	CHIP C 0	0.47UF K		L24			L92-0141-05	ФЕРРИТ	
							L25			L40-8275-92	КАТУШКА ИНДУКТИВНОСТИ (8)	2NH)
C338			CC73GCH1H101J	CHIP C 1	100PF J							
C339			C92-0560-05	CHIP-TAN 1	10UF 6.3WV		L50			L92-0138-05	ФЕРРИТ	
C340			CK73GB1C104K	CHIP C 0	0.10UF K		L102			L40-1085-92	КАТУШКА ИНДУКТИВНОСТИ (10	ONH)
C341			CK73GB1C473K	CHIP C 0	0.047UF K		L103			L92-0138-05	ФЕРРИТ	
C342			C92-0560-05	CHIP-TAN 1	10UF 6.3WV		L104			L40-2775-92	КАТУШКА ИНДУКТИВНОСТИ (2	7NH)
							L105			L40-1585-54	КАТУШКА ИНДУКТИВНОСТИ (150	ONH)
C343			CK73GB1C473K	CHIP C 0	0.047UF K							
C344			CC73GCH1H221J	CHIP C 2	220PF J		L106			L92-0149-05	ФЕРРИТ	
C345			C92-0665-05	TANTAL 1	100UF 6.3WV		L107			L40-2775-54	КАТУШКА ИНДУКТИВНОСТИ (2)	7NH)
C346			CK73GB1H102K	CHIP C 10	1000PFK		L108			L92-0149-05	ФЕРРИТ	
C348			CK73HB1H471K	CHIPC 4	470PF K		L109			L40-2295-85	КАТУШКА ИНДУКТИВНОСТИ (2)	2UH)

СПИСОК КОМПЛЕКТУЮЩИХ

Блок TX-RX (X57-6870-20)

TK-2260

СПИСОК КОМПЛЕКТУЮЩИХ

БЛОК TX-RX (X57-6870-20)

Ref. No.	Address	$\begin{aligned} & \text { New } \\ & \text { parts } \end{aligned}$	Номер	Описание			Примечание
R230			RK73GB1J222J	CHIP R	2.2K	J 1/16W	
R231			RK73GB1J470J	CHIP R	47	J 1/16W	
R233			RK73GB1J221J	CHIP R	220	J 1/16W	
R234			RK73GB1J104J	CHIP R	100K	J 1/16W	
R237			RK73GB1J184J	CHIP R	180K	J 1/16W	
R238			RK73GB1J104J	CHIP R	100K	J 1/16W	
R239			RK73GB1J470J	CHIP R	47	J 1/16W	
R240			R92-1252-05	CHIP R	00HM	J 1/16W	
R241,242			RK73HB1J105J	CHIP R	1.0M	J 1/16W	
R243			R92-0670-05	CHIP R	00HM		
R291			R92-1252-05	CHIP R	00HM	J 1/16W	
R301			RK73HB1J473J	CHIP R	47K	J 1/16W	
R304			RK73HB1J564J	CHIP R	560K	J 1/16W	
R305			RK73HB1J104J	CHIP R	100K	J 1/16W	
R306			RK73HB1J102J	CHIP R	1.0K	J 1/16W	
R307,308			R92-1368-05	CHIP R	00HM		
R310			RK73GB1J394J	CHIP R	390K	J 1/16W	
R311			RK73HB1J123J	CHIP R	12K	J 1/16W	
R312			RK73GB1J334J	CHIP R	330K	J 1/16W	
R313			RK73GB1J104J	CHIP R	100K	J 1/16W	
R314			RK73GB1J103J	CHIP R	10K	J 1/16W	
R315			RK73GB1J334J	CHIP R	330K	J 1/16W	
R316			RK73GB1J124J	CHIP R	120K	J 1/16W	
R317			RK73GB1J474J	CHIP R	470K	J 1/16W	
R318			RK73GB1J122J	CHIP R	1.2K	J 1/16W	
R319			RK73HB1J563J	CHIP R	56K	J 1/16W	
R320			RK73HB1J332J	CHIP R	3.3K	J 1/16W	
R321			RK73HB1J224J	CHIP R	220K	J 1/16W	
R322			RK73HB1J184J	CHIP R	180K	J 1/16W	
R323			RK73HB1J563J	CHIP R	56K	J 1/16W	
R324,325			RK73GB1J104J	CHIP R	100K	J 1/16W	
R326			R92-1252-05	CHIP R	00HM	J 1/16W	
R327			RK73GB1J184J	CHIP R	180K	J 1/16W	
R328			RK73GB1J103J	CHIP R	10K	J 1/16W	
R329			RK73GB1J823J	CHIP R	82K	J 1/16W	
R330			RK73HB1J332J	CHIP R	3.3 K	J 1/16W	
R331			RK73GB1J393J	CHIP R	39K	J 1/16W	
R332			RK73GB1J153J	CHIP R	15K	J 1/16W	
R334			RK73GB1J473J	CHIP R	47K	J 1/16W	
R335			RK73GB1J222J	CHIP R	2.2K	J 1/16W	
R336			RK73GB1J102J	CHIP R	1.0K	J 1/16W	
R337			RK73GB1J101J	CHIP R	100	J 1/16W	
R338			RK73GB1J222J	CHIP R	2.2 K	J 1/16W	
R339			RK73GB1J471J	CHIP R	470	J 1/16W	
R340			RK73GB1J182J	CHIP R	1.8K	J 1/16W	
R341			RK73GB1J103J	CHIP R	10K	J 1/16W	
R342			RK73GB1J100J	CHIP R	10	J 1/16W	
R343			RK73GB1J474J	CHIP R	470K	J 1/16W	
R344			RK73GB1J102J	CHIP R	1.0K	J 1/16W	
R345,346			RK73GB1J101J	CHIP R	100	J 1/16W	
R347			RK73GB1J104J	CHIP R	100K	J 1/16W	
R348			RK73GB1J563J	CHIP R	56K	J 1/16W	
R349			RK73GB1J333J	CHIP R	33K	J 1/16W	
R350			R92-1368-05	CHIP R	0OHM		
R354,355			RK73HB1J103J	CHIP R	10K	J 1/16W	
R357			R92-1368-05	CHIP R	00HM		
R360			R92-1368-05	CHIP R	00HM		
R365			RK73HB1J473J	CHIP R	47K	J 1/16W	
R403			RK73GB1J101J	CHIP R	100	J 1/16W	
R404			RK73HH1J474D	CHIP R	470K	D 1/16W	

TK-2260

СПИСОК КОМПЛЕКТУЮЩИХ

БЛОК TX-RX (X57-6870-20)
ДОПОЛНИТЕЛЬНАЯ РСВ

Ref. No.	Address	$\begin{aligned} & \text { New } \\ & \text { parts } \end{aligned}$	Номер	Описание	Примечание
Q106			2SK2595	FET	
Q107			DTC114EE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q108			2SK1824	FET	
Q109			DTA144EE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q202			DTA144EE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q203			2SC4649(N,P)	ТРАНЗИСТОР	
Q204,205			3 SK318	FET	
Q301			DTA114EE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q302			2SC4919	ТРАНЗИСТОР	
Q303			DTC144EE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q304			2SA1362(GR)	ТРАНЗИСТОР	
Q305			DTC144EE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q306			CPH3413	FET	
Q316			CPH3413	FET	
Q401,402			DTC114EE	ЦИФРОВОЙ ТРАЗИСТОР	
Q403,404			CPH3317	FET	
Q405			DTA123JE	ЦИФРОВОЙ ТРАНЗИСТОР	
Q407,408			2SK1830	FET	
TH101			157-104-65001	ТЕРМИСТОР	
TH203			157-104-65001	ТЕРМИСТОР	

Ref. No.	Address	New parts	Номер	Описание	При

TK-2260

РАЗБОРКА

20 Комплектующие с номерами больше, чем 700, не поставляются..

TK-2260

УПАКОВКА

TK-2260

УПАКОВКА (TK-2260)

НАСТРОЙКА

Тестовое оборудование необходимое для настройки

Тестовое оборудование		Основные характеристики
1. Генератор стандартных сигналов (ГСС)	Диапазон частот Модуляция Выход	136-174МГц. Частотная и внешняя модуляция $-127 \mathrm{dBm} / 0.1 \mu \mathrm{~V}$ до более, чем $-47 \mathrm{dBm} / 1 \mathrm{mV}$
2. Измеритель мощности	Входное сопротивление Диапазон частот Диапазон измерений	$\begin{aligned} & \text { 50 } 2 . \\ & 136-174 М Г ц . \\ & \text { До 10W } \\ & \hline \end{aligned}$
3. Измеритель девиации	Диапазон частот	136-174МГц.
4. Цифровой вольтметр (ЦВМ)	Диапазон измерений Входное сопротивление	10 mB до 10В DC Высокое входное сопротивление для малой нагрузки
5. Осциллограф		до З0МГц.
6. Частотомер с высокой чувствительностью	Диапазон частот Стабильность частоты	10Гц до 1000МГц не менее 0.2ppm
7. Амперметр		5A.
8. Высокочастотный вольтметр	Диапазон частот Диапазон по напряжению	$\begin{aligned} & \text { 50Гц до 10КГц. } \\ & \text { 1mB -10B. } \end{aligned}$
9. Генератор звуковой частоты (ГЗЧ)	Диапазон частот Выход	$\begin{aligned} & \text { 50Гц до 5КГц } \\ & 0 \text {-1В. } \end{aligned}$
10. Измеритель искажений	Способен измерить Входной уровень	3% или меньше на 1КГц. 50 mB - 10 V rms .
11. Анализатор спектра	Диапазон измерений	DC до 1 ГГц или больше
12. Следящий генератор	Центральная частота Выходное напряжение	50КГц to 600МГц 100 mB или больше
13. 8Ω нагрузка		8Ω, ЗВт.
14. Регулируемый источник питания		5B-10B, примерно 3A оборудованный амперметром.

Аппаратура для настройки и ремонта

1. Адаптер антенного разъема

Антенный разъем радиостанции используется, как порт SMA
Для настройки используется адаптер антенного разъема $\{S M A(f) B N C(f)$ или SMA(f) N(f)]. (Данный адаптер не поставляется в комплекте, но его возможно приобрести.)

2. Ремонтный зажим (Шасси)

Соедините кабелем питания зажимы аккумулятора, установленного в радиостанцию, и источник питания. Перед включением убедитесь в правильной полярности соединения,в противномслучае Вы можете повредить радиостанцию, либо источник питания, либо и то и другое. Разместите модуль TX-RX на шасси и закрепите винтами.

Облегчает проверку напряжения и защищает оконечный усилитель FET при проверке напряжений на стороне блока TX-RX во время ремонта.

3. Зажимы аккумулятора (W05-1011-00)

Примечаниєри использовании аккумуляторных зажимов необходимо измерить напряжение на выводах. Иначе между радиостанцией и источником питания на кабеле может происходить падение напряжения,

НАСТРОЙКА

Контрольные точки TX-RX модуля (X57-687) Вид со стороны компонентов

VR1 : настройка частоты
BPF : тестовая точка формы волны после фильтра
CV : полюс блокировки настройки напряжения

Со стороны дорожек

TC1 : Регулировка напряжения блокировки передачи
TC2 : Регулировка напряжения блокировки приема
CV : Полюс регулировки напряжения блокировки
Рис. 1 Контрольные точки

Частота и сигналинг

Радисотанция настроена на чатоты, указанные в следующей таблице. Если необходимо, возможна перестройка на любые иные частоты, в соответствии с процедурой перестройки.
Частота (MHz)

Канал No.	RX частота	TX частота
1	155.050	155.100
2	136.050	136.100
3	173.950	173.900
4	155.000	155.000
5	155.200	155.200
6	155.400	155.400
$7 \sim 16$	-	-

Сигналинг

Сигналинг No.	RX	TX
1	Нет	Нет
2	Нет	100 Hz Square Wave
3	QT 67.0 Hz	QT 67.0 Hz
4	QT 151.4 Hz	QT 151.4 Hz
5	QT 250.3 Hz	QT 250.3 Hz
6	DQT D023N	DQT D023N
7	DQT D754I	DQT D754I
8	DTMF 159D	DTMF 159D
9	Нет	DTMF тон 9

Приготовления для настройки передатчика
Перед настройкой радиостанции, подключите ее к необходимому источнику питания.

При настройке передатчика всегда необходимо подключать необходимую нагрузку (или мощеметр).

Разъем вывода динамика должен быть соединен с 8W нагрузкой и подключен к AC-вольтметру, а также измерителю аудио-дисторции или измерителю уровня SINAD (при проведении любых) настроек.

Частота настройки

TEST CH	RX	TX
Центр	155.050 MHz	155.000 MHz
Низко	136.050 MHz	136.000 MHz
Высоко	173.950 MHz	174.000 MHz
Низко' $^{\prime}$	145.550 MHz	145.600 MHz
Высоко' $^{\prime}$	164.550 MHz	164.600 MHz

НАСТРОЙКА

Общее

Параметр	Условие	Измерение		Настройка		Спецификации Примечание
		Проверочн. оборуд.	Полюс	Деталь	Метод	
1.Установки	1) BATT напряжение $: 7.5 \mathrm{~V}$ 2) SSG standard modulation [Wide] MOD:1kHz,DEV:3kHz [Narrow] MOD:1kHz,DEV:1.5kHz					
2.VCO напряж	1) СН: Высокий	Мощеметр DVM	$\begin{array}{\|l\|} \hline \text { ANT } \\ \text { CV } \end{array}$	TC2	4.0 V	$\pm 0.1 \mathrm{~V}$
блокировки RX	2) $\mathrm{CH}:$ Низкий				Проверка	0.6 V или болеє
3.VCO напряя блокировки	3) CH : Высокий PTT: Вкл			TC1	4.2 V	$\pm 0.1 \mathrm{~V}$
TX	4) $\mathrm{CH}:$ Низкий РТТ: Вкл				Проверка	0.6 V или болеє

Секция передатчика

Параметр	Условие	Измерение		Настройка		Спецификации Примечание
		Проверочн.обор.	Полюс	Деталь	Метод	
1.Настройка частоты	1) СН: Высокий 2) РТT: Вкл	Частотомер	ANT	VR1	173.900 MHz	$\pm 50 \mathrm{~Hz}$
2. Настройка высокой мощности	TEST CH: Низкий Низкий' Центр Высокий' Высокий (5 точек) BATT напряжение: 7.5 V РТТ: Вкл	Мощеметр Амметр		Софт:KPG-87D		$5.0 \mathrm{~W} \pm 0.1 \mathrm{~W}$ 1.9 А или менее
3.Настройка низкой мощности	TEST СН: Низкий Низкий' Центр Высокий' Высокий (5 точек) ВАТТ напряжение: 7.5 V РТТ: Вкл					$1.0 \mathrm{~W} \pm 0.1 \mathrm{~W}$ 0.9 А или менее
4. Настройка макс.девиац [Широко]	TEST CH: Центр\quadНизкий Высокий (3 точки)AG:1kHz/150mVФильтр измеритель девиацLPF: 15 kHzHPF:Выкл.PTT: Вкл	Мощеметр Изм-ль девиации Осцилограф AG AF VTVM	ANT SP/MIC разъем		4.2kHz (В соответствии C $+,-)$	$\pm 50 \mathrm{~Hz}$
[Узко]	TEST CH: Центр PTT: Вкл				$\begin{aligned} & 2.2 \mathrm{kHz} \\ & \text { (в соотвествии с } \\ & +,-) \\ & \hline \end{aligned}$	$\pm 50 \mathrm{~Hz}$
5.VOX 1 запись	TEST CH: Центр AG: $1 \mathrm{KHz} / 45 \mathrm{mV}$					

НАСТРОЙКА

Параметр	Условия	Измерение		Настройка		Спецификации Примечания
		Пров.оборудование	Разъем	Части	Метод	
6.VOX 10 Запись	TEST CH:Центр AG: $1 \mathrm{kHz} / 3.0 \mathrm{mV}$	Мощеметр Изм-ль девиации Осциллограф AG AF VTVM	ANT Разъем SP/MIC	Прогр. обеспече-ние:KPG-87D		
7.DQT Настр. баланс [Широко]	TEST CH: Центр Нихко Высоко (3 точки) LPF:3kHz HPF:Выкл PTT:Вкл TEST CH:Центр РTT: Вкл		ANT	Программное обе печение:KPG-87D	сЄоздание демодуляции волны в квадр. волнах	$\square \square \square$
8.QT Девиация Настройка [Широко]					0.75 kHz	$\pm 40 \mathrm{~Hz}$
[Узко]	TEST CH: Центр PTT: Вкл				0.35 kHz	$\pm 40 \mathrm{~Hz}$
9.DQT Девиация Настройка [Широко]	```TEST CH: Центр Низко Высоко (3 точки) LPF:3kHz HPF: Выкл PTT: Вкл```				0.75 kHz	$\pm 40 \mathrm{~Hz}$
[Узко	TEST CH:Центр PTT: Вкл				0.35 kHz	$\pm 40 \mathrm{~Hz}$
10.DTMF девиация Настройка [Широко]	TEST CH:Центр LPF:15kHz HPF:Выкл РТТ: Вкл				3.0 kHz	$\pm 100 \mathrm{~Hz}$
[Узко]	TEST CH:Центр PTT: Вкл				1.5 kHz	$\pm 100 \mathrm{~Hz}$
11.MSK Девиация Настройка [Широко]	Низко Высоко (3 точки) LPF: 15 kHz HPF: Выкл PTT: Вкл				3.0 kHz	$\pm 100 \mathrm{~Hz}$
[Узко]	TEST CH:Центр РТТ: Вкл				1.5 kHz	$\pm 100 \mathrm{~Hz}$

НАСТРОЙКА

Секция приемника

Параметр	Условие	Измерение		Настройка		Спецификации/ Примечание
		Проверочн.обор.	Полюс	Деталь	Метод	
1.BPF волна -настройка	(1) Центральная частота Установки спектр.аналиъ. Центр.-ч 155MHz Span : 50MHz RBW : 300 kHz VBW : 10 kHz ATT : 5dB (2) Высокая частота Установки спектр.аналиः. Центр.-ч. 174MHz (3) Низкая частота Установки спектр.аналиः. Центр.-ч 136MHz	Спектральный .анализатор	$\begin{aligned} & \text { ANT } \\ & \text { BPF } \end{aligned}$	Софт: KPG-87D	Настройка формы волны, как показано на рисунках	
2.Проверка чувствител ности (Широко) [Узко]	TEST CH: Низко Центр Высоко SSG выход:- $117 \mathrm{dBm}(0.3 \mu \mathrm{~V})$ SSG MOD:3.0kHz TEST CH: Центр SSG выход:- $115 \mathrm{dBm}(0.4 \mu \mathrm{~V})$ SSG MOD: 1.5 kHz	SSG DVM Осциллограф AF VTVM	ANT		Проверка	12dB SINAD или более
3.SQL1 (Threshold) запись [Широко] [Узко]	TEST CH: Центр Низко Высоко SSG выход- $123 \mathrm{dBm}(0.16 \mu \mathrm{~V})$ SSG MOD: 3.0 kHz TEST CH: Центр SSG выход:-122 dBm $(0.18 \mu \mathrm{~V})$ SSG MOD: 1.5 kHz			Софт: KPG-87D	Запись	Сквэлч открыт
4.SQL9 (Tight) запись [Широко] \qquad	TEST CH: Центр Низко Высоко SSG выход:- $117 \mathrm{dBm}(0.3 \mu \mathrm{~V})$ SSG MOD: 3.0 kHz TEST CH: Центр SSG выход:- $116 \mathrm{dBm}(0.35 \mu \mathrm{~V})$ SSG MOD: 1.5 kHz					
5.BATT запись детекции	BATT напряжение :5.9V	DVM	ANT BATT полюс		Запись	BATT напряжение :5.9V

	人		気	bee	$\stackrel{\rightharpoonup}{3}$	$\overline{3}$	\bigcirc
∞	\bigcirc	－${ }^{\text {m }}$	${ }_{0}$ m		8	$\stackrel{3}{3}$	\bigcirc
	eiede		$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0		0
\sim	蔷 $\stackrel{\rightharpoonup}{\mathrm{m}}$	$\stackrel{\text { 号 }}{\text { 市 }}$	）${ }_{\square}$		\pm	＋	
		莫莫荅	$\stackrel{\rightharpoonup}{0}$	\mathfrak{b}	$$		免免
®	\％	${ }_{0}^{\circ}{ }^{\circ}$	${ }_{0}^{\infty}$			\％	\bigcirc
		$\begin{aligned} & \text { por } \\ & + \\ & \hline \end{aligned}$		$\mathfrak{b l \| l}$	$\stackrel{\rightharpoonup}{3}$	苞荷	0
		${ }^{\infty}$				令	

		Bo			
\bigcirc	\％ 3	o°	\％		
	¢		\＆		z
है	交	¢	뭊		
	品号	㠋			䢒詈
	\％ 2	d			
	웅앙	\mathfrak{c}			8．
	$\sim_{\circ}^{\circ} \mathrm{\omega}$	A ${ }^{\text {B }}$			言
	岩	合这	茴茄	管	

TK-2260

БЛОК-CXEMA

БЛОК-СХЕМА

TK-2260

КАРТА НАПРЯЖЕНИЙ

Характеристики

Зарядный ток \qquad $850 \mathrm{~mA} \pm 5 \%$
Время заряда KNB-29N : Примерно. 180 минут KNB-30A : Примерно. 120 минут
Размеры (только ЗУ) $86.3 \mathrm{~W} \times 46.2 \mathrm{H} \times 100.0 \mathrm{D}$ (мм) $3-3 / 8 \mathrm{~W} \times 1-7 / 8 \mathrm{H} \times 4 \mathrm{D}$ (дюймов)
Вес (только ЗУ). \qquad Примерно $100 \mathrm{~g} / 0.22$ lbs

KNB-30A (Ni-Cd АКУМУЛЯТОР)
Внешний вид
Характеристики

Напряжение \qquad .7.2V (1.2V x 6) Емкость батареи........ 1100mAh

KNB-29N (Ni-MH АККУМУЛЯТОР)

Характеристики
Напряжение.......7.2V (1.2V x 6)
Емкость батареи....... $1500 \mathrm{~mA} /$ ч

КВН-10 (ПОЯСНОЕ КРЕПЛЕНИЕ)
Внешний вид

ХАРАКТЕРИСТИКИ

OCHOBHЫE

Диапазон частот.	136~174МГц
Количество каналов	Max. 16
Количество групп	Max. 16
Шаг сетки частот	$25 \mathrm{kHz}, 30 \mathrm{kHz}$ (Wide) $12.5 \mathrm{kHz}, 15 \mathrm{kHz}$ (Narrow)
Шаг сетки частот ФАПЧ	$2.5 \mathrm{kHz}, 5 \mathrm{kHz}, 6.25 \mathrm{kHz}, 7.5 \mathrm{kHz}$
Напряжение питания	7.5 V DC $\pm 20 \%$
Продолжительность работы батареи	Больше14 часов при 5Вт (5-5-90 циклс аккумулятором KNB-29N)
	Больше 9 часов при 5Вт (5-5-90 циклс аккумулятором KNB-30A)
Рабочий диапазон температур	-30 C to +60C (-22 F to +140 F)
Стабильность частоты	$\pm 2.5 \mathrm{ppm}$ (-30C to +60C)
Channel Frequency Spread	38 MHz
Размеры и вес	
Только радиостанция	$\begin{aligned} & 54(2-1 / 8) \mathrm{W} \times 122(4-13 / 16) \mathrm{H} \times 21.1 \text { (13/16) D мм (дюймы) } \\ & 160 \mathrm{~g}(0.35 \mathrm{lbs}) \end{aligned}$
C KNB-29N (1500mAh аккумулятор) .	54 (2-1/8) W x 122 (4-13/16) H x 33 (1-5/16) D D мм (дюймы) 360g (0.79lbs)
C KNB-30A (1100mAh аккумулятор).	$\begin{aligned} & 54(2-1 / 8) \mathrm{W} \times 122(4-13 / 16) \mathrm{H} \times 33(1-5 / 16) \mathrm{D} \text { мм (дюймы) } \\ & 340 \mathrm{~g}(0.75 \mathrm{lbs}) \end{aligned}$

ПРИЕМНИК(Измерения сделаны по TIA/EIA-603)

Чувствительность	
EIA 12dB SINAD	$0.25 \mu \mathrm{~V}$ (Wide) $/ 0.28 \mu \mathrm{~V}$ (Narrow)
Избирательность	70dB (Wide)/60dB (Narrow)
Интермодуляция	65dB (Wide)/60dB (Narrow)
Spurious response	65dB
Выходная звукова	$500 \mathrm{mBт}$ на8 Ω при менее 10% и

ПЕРЕДАТЧИК (Измерения сделаны по TIA/EIA-603)
Выходная мощность ВЧ ... 5W/1W
Spurious and Harmonics.. 65dB
Модуляция... 16KФF3E (Wide)/11KФF3E (Narrow)
FM Шум .. 45dB (Wide)/40dB (Narrow)
Аудио искажения ... Меньше 5\%

